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This supplementary appendix provides a number of additional results for “Difference-in-
Differences with a Continuous Treatment”. Appendix SA contains a full discussion of the setting
with multiple time periods and variation in treatment timing and dose intensity and expands upon
the results provided in Appendix D in the main text. This section also provides a number of results
about interpreting TWFE regressions in the multiple-period setting. Appendix SB provides proofs
for all the results in the main text and in the supplementary appendix concerning multiple periods
and variation in treatment timing and dose intensity. Appendix SC provides results and proofs for
a number of additional results that were discussed in the main text: results for settings with no un-
treated units; additional results for TWFE decompositions with a continuous treatment; and TWFE
decompositions with a multi-valued discrete treatment. Appendix SD provides a discussion and a
proof for Theorem C.1 in the main text, which provided a comparison between different versions of
parallel trends assumptions as well as characterized their relationship to restrictions on treatment
effect heterogeneity. Finally, Appendix SE provides results on relaxing the strong parallel trends
assumption, which was briefly discussed in Section 5.1 in the main text.

SA Additional Details for Multiple Periods and Variation in Treat-
ment Timing and Dose

In Section 5.2 and Appendix D in the main text, we briefly discussed some results concerning
difference-in-differences with a continuous treatment when there are multiple time periods and vari-
ation in treatment timing across units. This section provides a full treatment of that setting.

SA.1 Target Parameters

Following the discussion in the main text, we mainly consider identifying the disaggregated param-
eters ATT (g, t, d|g, d), ATE(g, t, d), ACRT (g, t, d|g, d), and ACR(g, t, d) which are all defined in
Appendix D. In the main text, we also introduced more aggregated parameters that are easier to
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report and estimate than the fully disaggregated parameters previously mentioned. In particular,
we discussed the identification of ATEdose(d) and ACRdose(d), which averaged ATE(g, t, d) and
ACR(g, t, d) across timing groups and time periods to deliver summary parameters that were solely a
function of the dose. We also discussed how to average these into scalar summary parameters, ATEo

and ACRo. Finally, we discussed the identification of the event-study parameters ATEes(e) and
ACRes(e), which average across dose and partially average across timing groups and event times to
deliver average treatment effects and average causal responses as a function of event-time. All of the
identification results were in the context of a version of strong parallel trends in Assumption 5-MP.

In this section, we start by introducing “on-the-treated” versions of the summary causal effect
parameters discussed in the previous paragraph. To start with, consider the summary parameter

ATT dose(d|d) = E
[
TE(d)

∣∣∣D = d,G ≤ T
]

which (recalling that, among units that participate in the treatment in any time period, TEi was
defined as the average treatment effect across all post-treatment periods for unit i in the main text)
is the average treatment effect of dose d across post-treatment periods among those that experienced
dose d. We can likewise similarly define a causal response parameter

ACRT dose(d|d) = ∂ATT dose(l|d)
∂l

∣∣∣∣∣
l=d

ATT dose(d|d) and ACRT dose(d|d) are analogs of ATT (d|d) and ACRT (d|d) considered in the main
text in the case with two time periods. Following the same line of thinking as in the main text, we
can also further aggregate these parameters into scalar summary parameters:

ATT o = E
[
ATT dose(D|D)

∣∣∣G ≤ T
]

and ACRT o = E
[
ACRT dose(D|D)

∣∣∣G ≤ T
]

ATT o and ACRT o are fully aggregated parameters that can summarize “on-the-treated” level effects
and causal responses, respectively; they are analogous to the homonymous parameters discussed in
the two-period case considered in the main text. Following the same line of argument as in the
main text, next we show that ATT dose(d|d) can be expressed in terms of underlying ATT (g, t, d|g, d)
parameters. To see this, notice that

ATT dose(d|d) = E
[
TE(d)

∣∣∣D = d,G ≤ T
]

=
∑
g∈Ḡ

1

T − g + 1

T∑
t=2

1{t ≥ g}E
[
Yi,t(g, d)− Yi,t(0)

∣∣∣G = g,D = d
]
P(G = g|D = d,G ≤ T )

=
∑
g∈Ḡ

T∑
t=2

ωdose(g, t, d)ATT (g, t, d|g, d)

where ωdose(g, t, d) = 1{t≥g}
T−g+1P(G = g|D = d,G ≤ T ) and where the first equality comes from the

definition of ATT dose(d|d), the second equality holds by the definition of TEi(d) and by the law of
iterated expectations, and the third equality holds by the definition of ωdose(g, t, d). An important
difference relative to ATEdose(d) in the main text is that, here, the weights also depend on the dose
d. It is also straightforward to see that, given some value of d, ωdose(g, t, d) is non-negative for all

2



values of (g, t) and that
∑
g∈Ḡ

T∑
t=2

ωdose(g, t, d) = 1.

Next, we relate ACRT dose(d|d) to underlying ACRT (g, t, d|g, d). Notice that

ACRT dose(d|d) = ∂

∂l
E
[
TE(l)

∣∣∣D = d,G ≤ T
]∣∣∣∣∣

l=d

=
∂

∂l
E

[
1

T −G+ 1

T∑
t=2

1{t ≥ G}
(
Yi,t(G, l)− Yi,t(0)

)∣∣∣D = d,G ≤ T

] ∣∣∣∣∣
l=d

=
∂

∂l

∑
g∈Ḡ

1

T − g + 1

T∑
t=2

1{t ≥ g}E
[
Yi,t(g, l)− Yi,t(0)

∣∣∣G = g,D = d]
]
P(G = g|D = d,G ≤ T )


∣∣∣∣∣
l=d

=
∑
g∈Ḡ

T∑
t=2

ωdose(g, t, d)ACRT (g, t, d|g, d)

where the first line comes from the definition of ACRT dose(d|d), the second line holds from the
definition of TE(d), the third line holds from the law of iterated expectations, and the last line
holds because the only term that depends on l is the inside conditional expectation (and then by
the definition of ACRT (g, t, d|g, d)). The previous expression shows that the aggregated parameter
ACRT dose(d|d) can be expressed as a weighted average of underlying ACRT (g, t, d|g, d) parameters.

Next, we consider “on-the-treated” event study parameters. Recall that, for units that are ever ob-
served to participate in the treatment for e periods, we defined TEi(d|e) = Yi,Gi+e(Gi, d)−Yi,Gi+e(0).
Next, we define intermediate “on-the-treated” parameters that are a function of the dose and event-
time e:

ÃTT
dose,es

(d|d, e) = E
[
TE(d|e)

∣∣∣D = d,G+ e ∈ [2, T ], G ≤ T
]
,

ÃCRT
dose,es

(d|d, e) = ∂ÃTT
dose,es

(l|d, e)
∂l

∣∣∣∣∣
l=d

where ÃTT
dose,es

(d|d, e) is the average treatment effect of dose d among those in dose group d (con-
ditioning on dose group d is the difference relative to ÃTE

dose,es
(d|e) discussed in the main text) for

those that have been exposed to the treatment for e periods. Similarly, ÃCRT
dose,es

(d|d, e) is the
average causal response to a marginal increase in the dose among those in dose group d that have
been exposed to the treatment for e periods.

As in the main text, if a researcher wants to report an event study, one option is to pick a
particular value of d and report ÃTT

dose,es
(d|d, e) and/or ÃCRT

dose,es
(d|d, e) for that value of the

dose while varying event time. Another option is to average these parameters across all doses, which
is the route we follow now. In particular, we can consider the parameters

ATT es(e) = E
[
ÃTT

dose,es
(D|D, e)

∣∣∣G+ e ∈ [2, T ], G ≤ T
]

ACRT es(e) = E
[
ÃCRT

dose,es
(D|D, e)

∣∣∣G+ e ∈ [2, T ], G ≤ T

]
Although we suspect that these are the natural event study target parameters in most applications,
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because they are simple averages ÃTT
dose,es

(d|d, e) and ÃCRT
dose,es

(d|d, e) over the dose, next we
show that ÃTT

dose,es
(d|d, e) and ÃCRT

dose,es
(d|d, e) can be related to the corresponding underlying,

disaggregated parameters ATT (g, t, d|g, d) and ACRT (g, t, d|g, d). Toward this end, let πg(e, d) =

P(G = g|D = d,G+ e ∈ [2, T ], G ≤ T ), and notice that

ÃTT
dose,es

(d|d, e) = E
[
TE(d|e)|D = d,G+ e ∈ [2, T ], G ≤ T

]
=
∑
g∈Ḡ

1{g + e ∈ [2, T ]}E[Yg+e(g, d)− Yg+e(0)|G = g,D = d]πg(e, d)

=
∑
g∈Ḡ

{
1{g + e ∈ [2, T ]}E[Yg+e(g, d)− Yg+e(0)|G = g,D = d]πg(e, d)

T∑
t=2

1{g + e = t}

}

=
∑
g∈Ḡ

T∑
t=2

1{g + e ∈ [2, T ]}1{g + e = t}E[Yt(g, d)− Yt(0)|G = g,D = d]πg(e, d)

=
∑
g∈Ḡ

T∑
t=2

ωdose,es(g, t, d|e)ATT (g, t, d|g, d)

where ωdose,es(g, t, d|e) = 1{g + e ∈ [2, T ]}1{g + e = t}πg(e, d) and where the first equality holds by
the definition of ÃTT

dose,es
(d|d, e), the second equality holds by the law of iterated expectations, the

third equality holds because
T∑
t=2

1{g+e = t} = 1 among groups that are observed to participate in the

treatment for e periods, the fourth equality holds by combining the summations, and the last equality
holds by the definitions of ωdose,es and ATT (g, t, d|g, d). Notice that the weights, ωdose,es(g, t, d|e)
are similar to the event study weights wdose,es(g, t|e) discussed in the main text except for that the
probability term here depends on d while it did not in the main text—this difference arises because
the parameters here are “on-the-treated” while the ones in the main text were not. Next, consider

ÃCRT
dose,es

(d|d, e) =
∂E
[
TE(l|e)|D = d,G+ e ∈ [2, T ], G ≤ T

]
∂l

∣∣∣∣∣
l=d

=
∂

∂l

∑
g∈Ḡ

T∑
t=2

1{g + e ∈ [2, T ]}1{g + e = t}E[Yt(g, l)− Yt(0)|G = g,D = d]πg(e, d)


∣∣∣∣∣
l=d

=
∑
g∈Ḡ

T∑
t=2

ωdose,es(g, t, d|e)ACRT (g, t, d|g, d)

where the first equality holds by the definition of ÃCRT
dose,es

(d|d, e), the second equality holds using
the same sort of argument as for ÃTT

dose,es
(d|d, e) above, and the last equality holds because the

only term that depends on l is the inside conditional expectation which is equal to ATT (g, t, l|g, d)
and then the result holds by the definitions of ωdose,es(g, t, d|e) and ACRT (g, t, d|g, d).

This discussion highlights that if ATT (g, t, d|g, d) and/or ACRT (g, t, d|g, d) are identified, then
we can recover the more aggregated summary parameters that have been discussed in this section.
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SA.2 Identification

In this section, we consider the identification of the disaggregated parameters ATT (g, t, d|g, d),
ATE(g, t, d), ACRT (g, t, d|g, d), and ACR(g, t, d). Given the discussion above and in Appendix D in
the main text, if these parameters are identified, then it implies that we can recover more aggregated
parameters (e.g., ATT es(e) or ACR(d), among others) that were discussed in those sections.

Following the discussion in Callaway and Sant’Anna (2021) and Marcus and Sant’Anna (2021),
we consider several alternative versions of the parallel trends and strong parallel trends assumptions
that we considered in the main text. We note that, in a setting with two periods, all of the versions
of parallel trends and strong parallel trends that we consider here are equivalent to each other though
they differ in cases with multiple periods and variation in treatment timing.1

Assumption 4-MP-Extended (Parallel Trends with Multiple Periods and Variation in Treatment
Timing).

(a) For all g ∈ G, t = 2, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0].

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0].

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups
k ∈ G such that t < k (i.e., pre-treatment periods for group k).

Assumption 4-MP-Extended (a), (b), and (c) all provide ways to extend the idea of parallel
trends from a two-period setting to a setting with multiple periods and variation in treatment timing.
They differ on the basis of (i) the comparison group that they rationalize and (ii) whether parallel
trends is assumed to hold in pre-treatment periods. Assumption 4-MP-Extended(a) is the strongest
assumption about paths of untreated potential outcomes. It says that paths of untreated potential
outcomes are the same for all groups and for all doses across all time periods. Assumption 4-MP-
Extended(b) says that the path of outcomes for group g in post-treatment time periods is the same
as the path of untreated potential outcomes among never-treated units. Parallel pre-trends need
not hold under part (b). Assumption 4-MP-Extended(c) says that the path of outcomes for group
g in post-treatment time periods is the same as the path of outcomes among all groups that are
not treated yet in that period—this includes both the untreated group as well as groups that will
eventually be treated but that are not treated yet. Based on the results in earlier sections, note
that each parallel trends assumption in Assumption 4-MP-Extended is directed toward identifying
ATT (g, t, d|g, d) rather than ATE(g, t, d).

Next, we provide an analogous set of assumptions that target identifying ATE(g, t, d).

Assumption 5-MP-Extended (Strong Parallel Trends with Multiple Periods and Variation in
Treatment Timing).

1It is also straightforward to develop identification results under multi-period versions of aggregate parallel trends
(Assumption 4-Agg) or alternative strong parallel trends (Assumption 5-Alt) that we discussed in the main text. These
results hold using the same sort of extension ideas discussed here for parallel trends and strong parallel trends, so we
do not provide formal results for these cases for the sake of brevity.
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(a) For all g ∈ G, t = 2, . . . , T , and d ∈ D, E[Yt(g, d) − Yt−1(g, d)|G = g,D = d] = E[Yt(g, d) −
Yt−1(g, d)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(g, d)|G = g,D = d] = E[Yt(g, d) −
Yt−1(g, d)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(g, d)|G = g,D = d] = E[Yt(g, d) −
Yt−1(g, d)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups k ∈ G such
that t < k (i.e., pre-treatment periods for group k).

Parts (a), (b), and (c) of the assumption correspond to the same parts in Assumption 4-MP-
Extended and differ based on which group is used as the comparison group in terms of untreated
potential outcomes. Part (a) additionally corresponds to Assumption 5-MP in the main text. Finally,
the reason that there are two parts to these assumptions rather than just one as in Assumption 4-
MP-Extended is that, in the setup of this section, conditional on being in group g with t ≥ g, by
construction, there are no untreated units in the group; thus, the second part of the assumption han-
dles untreated potential outcomes slightly differently than treated potential outcomes—essentially
these multi-period versions of strong parallel trends allow us to compare paths of outcomes across
doses within a particular time period and for a particular timing group while some untreated compar-
ison group can be used to construct the trend in untreated potential outcomes. Before providing our
main identification result with multiple periods and variation in treatment timing and dose, recall
that (as defined in the main text) Wi,t = Di1{t ≥ Gi} which is equal to 0 for units that are untreated
in period t and equal to Di for units that have been treated by period t.

Theorem S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, and for all g ∈ G, t = 2, . . . , T such
that t ≥ g, and for all d ∈ D,

(1a) If, in addition, either Assumption 4-MP-Extended(a) or (c) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(1b) If, in addition, Assumption 4-MP-Extended(b) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

(2a) If, in addition, either Assumption 5-MP-Extended(a) or (c) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(2b) If, in addition, Assumption 5-MP-Extended(b) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

The proof of Theorem S1 is provided in Appendix SB. Part (1a) of Theorem S1 says that
ATT (g, t, d|g, d)—the average effect of participating in the treatment in time period t among units
who became treated in period g and experienced dose d—is identified under a parallel trends assump-
tion and that it is equal to the average path of outcomes experienced by units in group g under dose
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d adjusted by the average path of outcomes experienced among units that are not-yet-treated by
period t. The results in the other parts are similar as well. For part (1b), the weaker parallel trends
assumption in Assumption 4-MP-Extended(b) implies that the never-treated group should be used as
the comparison group (this is a smaller comparison group relative to the not-yet-treated group). Parts
(2a) and (2b) show that under Assumption 5-MP-Extended the same estimands identify ATE(g, t, d).

Finally, for this section, we show that the same sort of selection bias terms as we emphasized in
the main text can show up when making comparisons across doses (and, hence, show up in causal
response parameters) in a setting with multiple periods and variation in treatment timing and dose
under parallel trends assumptions. And, also like in the main text, strong parallel trends can be used
to eliminate these selection bias terms. For simplicity, we provide these results under the strongest
versions of Assumptions 4-MP-Extended and 5-MP-Extended, but analogous results hold in the other
cases as well.

Theorem S2. Under Assumptions 1-MP, 2-MP, and 3-MP, and for all g ∈ G, t = 2, . . . , T such
that t ≥ g, and for all d ∈ Dc

+,

(1) If, in addition, Assumption 4-MP-Extended(a) holds, then
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

selection bias

.

(2) If, in addition, Assumption 5-MP-Extended(a) holds, then
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATE(g, t, d) = ACR(g, t, d).

The proof of Theorem S2 is provided in Appendix SB. Theorem S2 provides an analogous result
for the case with multiple periods and variation in treatment timing and dose to Theorems 3.2
and 3.3 in the main text. The theorem has implications for the aggregated parameters discussed
above. If one maintains some version of strong parallel trends, then it rationalizes targeting causal
response parameters such as ACRdose(d) or ACRes(e). However, parallel trends alone does not
recover aggregated causal response such as ACRT dose(d|d) or ACRT es(e) due to comparisons of
paths of outcomes across doses including, under parallel trends, both causal responses and selection
bias. On the other hand, parallel trends alone does recover summary level-effect parameters such as
ATT dose(d|d), ATT o, or ATT es(e).2

Remark S1. The parallel trends assumptions in Assumption 4-MP-Extended are not the only possible
ones. Interestingly, with a continuous treatment, there are some possible (and reasonable) comparison
groups that are available that are not available with a binary treatment. For example, one could assume
that

2That said, it is worth emphasizing again that parallel trends alone does not rationalize causally interpreting
differences in ATT dose(d|d) across d—this is analogous to the discussion in the main text and is also closely related to
the discussion about ACRT dose(d|d) in this paragraph.
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For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k,D = d] for all
groups k ∈ G such that t < k (i.e., pre-treatment periods for group k).

This sort of assumption amounts to using as a comparison group the set of units that are not
yet treated but will eventually experience the same dose. It is straightforward to adapt the approach
described in Theorem S1 to this sort of case and propose related estimators that can deliver consistent
estimates of ATT (g, t, d|g, d) under this assumption.

Remark S2. If a researcher is interested in targeting a particular ATT (g, t, d|g, d) or ATE(g, t, d),
it is generally possible to weaken Assumption 4-MP-Extended or 5-MP-Extended. For example, one
could make parallel trends directly about long differences, (Yt−Yg−1), rather than all short differences
(this sort of assumption is generally weaker), or, in part (c) of each assumption, use more aggregated
comparison groups instead of imposing parallel trends for all possible comparison groups (which is
also weaker), or alternatively only make parallel trends assumptions for the particular dose being
considered.

Remark S3. We do not provide formal estimation results for the setting with multiple periods and
variation in treatment timing though we note that, if one bases estimation on the sample analog of the
results in Theorem S1, then the results in the main text for the case with two periods apply directly
to the disaggregated parameters ATT (g, t, d|g, d), ATE(g, t, d), and ACR(g, t, d). For the aggregated
parameters discussed above, at a high-level, one can then proceed to combine estimation results for
the disaggregated parameters with the estimation results for the related aggregation schemes proposed
in Callaway and Sant’Anna (2021).

Remark S4. Notice that the expressions for ATT (g, t, d|g, d) are the same under Assumption 4-
MP-Extended(a) and (c) while Assumption 4-MP-Extended(a) is stronger than Assumption 4-MP-
Extended(b). In estimation, it may be possible to propose more efficient estimators under Assump-
tion 4-MP-Extended(a) that exploit parallel trends holding across all periods and groups. This is akin
to similar issues that arise in a setting with binary treatment (see Callaway (2023) for a discussion
in the context of a binary treatment). The same sort of comment applies to estimating ATE(g, t, d)

under the different versions of Assumption 5-MP-Extended.

SA.3 TWFE estimators with multiple time periods and variation in treatment
timing

In applications with multiple periods and variation in treatment timing and dose, empirical researchers
typically estimate the TWFE regression

Yi,t = θt + ηi + βtwfeWi,t + vi,t. (S1)

Equation (S1) is exactly the same as the TWFE regression in the baseline case with two periods in
Equation (1.1) in the main text only with the notation slightly adjusted to match this section. In the
main text, we related βtwfe to several different types of causal effect parameters (see Theorem 3.4 in
the main text). In this section, we provide related results for the setting with multiple time periods and
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variation in treatment timing with a particular emphasis on the comparisons underlying βtwfe and in
causal interpretations (especially causal response interpretations) of βtwfe in the presence of treatment
effect heterogeneity. The results in this section generalize the results in several recent papers on
TWFE estimates, including Goodman-Bacon (2021) and de Chaisemartin and D’Haultfœuille (2020)
to our DiD setup with variation in treatment intensity. In this section, we modify our previous
notation slightly by setting Gi = T + 1 for units that do not participate in the treatment in any
period (rather than Gi = ∞), which simplifies the exposition in several places in this section.

To start with, write population versions of TWFE adjusted variables by

Ẅi,t = (Wi,t − W̄i)−

(
E[Wt]−

1

T

T∑
t=1

E[Wt]

)
, where W̄i =

1

T

T∑
t=1

Wi,t.

The population version of the TWFE estimator is

βtwfe =

1

T

T∑
t=1

E[Yi,tẄi,t]

1

T

T∑
t=1

E[Ẅ 2
i,t]

. (S2)

As in the main text, we present both a “mechanical” decomposition of the TWFE estimator and a
“causal” decomposition of the estimand that relates assumptions to interpretation. In order to define
these decompositions, we introduce a bit of new notation. First, define the fraction of periods that
units in group g spend treated as

Ḡg =
T − (g − 1)

T
.

For the untreated group g = T + 1 so that ḠT+1 = 0.
Next, we define time periods over which averages are taken. For averaging variables across time

periods, we use the following notation, for t1 ≤ t2,

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t.

It is also convenient to define some particular averages across time periods. For two time periods g

and k, with k > g, (below, g and k will often index groups defined by treatment timing), we define

Ȳ
PRE(g)
i = Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i = Ȳ

(g,k−1)
i , Ȳ

POST (k)
i = Ȳ

(k,T )
i .

Ȳ
PRE(g)
i is the average outcome for unit i in periods 1 to g − 1, Ȳ MID(g,k)

i is the average outcome
for unit i in periods g to k − 1, and Ȳ

POST (k)
i is the average outcome for unit i in periods k to T .

Below, when g and k index groups, Ȳ PRE(g)
i is the average outcome for unit i in periods before units

in either group are treated, Ȳ MID(g,k)
i is the average outcome for unit i in periods after group g has

become treated but before group k has been treated, and Ȳ
POST (k)
i is the average outcome for unit

i after both groups have become treated.
To fix ideas about how the staggered-timing/continuous treatment case works, consider a setup

with two timing groups, g and k, with k > g. Some units in the “early-treated” group have d = 2,
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and others have d = 4. Some units in the late-treated group have d = 5, and others have d = 6. Thus,
the four groups are early-treated/high-dose, early-treated/low-dose, late-treated/high-dose, and late-
treated/low-dose. Figure S1 plots constructed outcomes for these groups with a treatment effect that
is a one-time shift equal to d1.5.

Figure S1: A Simple Set-Up with Staggered Timing and Variation in the Dose

Notes: The figure plots simulated data for four groups: early-treated/high-dose, early-treated/low-dose,
late-treated/high-dose, and late-treated/low-dose.

Following Goodman-Bacon (2021), we motivate the decomposition of the TWFE estimand by
considering the four types of simple DiD estimands that can be formed using only one source of
variation. The first comparison is a within timing-group comparison of paths of outcomes among
units that experienced different amounts of the treatment.

δWITHIN (g) =
Cov(Ȳ POST (g) − Ȳ PRE(g), D|G = g)

Var(D|G = g)
. (S3)

This term is essentially the same as the expression for the TWFE estimand in the baseline two-period
case. It equals the OLS (population) coefficient from regressing the change in average outcomes before
and after g for units treated at time g on their dose, d. Figure S2 uses the four-group example to show
how δWITHIN (g) and δWITHIN (k) use higher-dose units as the “treatment group” and lower-dose
units as the “comparison group”.

The second comparison is based on treatment timing. It compares paths of outcomes between a
particular timing group g and a “later-treated” group k (i.e., k > g) in the periods after group g is

10



Figure S2: Within-Timing-Group Comparisons Across Doses

Notes: The figure shows the within-timing group comparison between higher- and lower-dose units defined by
δWITHIN (g) and δWITHIN (k).

treated but before group k becomes treated relative to their common pre-treatment periods.3

δMID,PRE(g, k) =
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]

. (S4)

Panel A of Figure S3 plots the outcomes used in this comparison with timing-group averages in black
and the specific dose groups from Figure S1 in light gray. Under a parallel trends assumption, we
show below that this term corresponds to a reasonable treatment effect parameter because the path
of outcomes for group k (which is still in its pre-treatment period here) is what the path of outcomes
would have been for group g if it had not been treated. Also note that this term encompasses
comparisons of group g to the “never-treated” group.

The third comparison is between paths of outcomes for the “later-treated” group k in its post-
treatment period relative to a pre-treatment period adjusted by the same path of outcomes for the
“early-treated” group g.

δPOST,MID(g, k) =
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
E[D|G = k]

. (S5)

These terms use the already-treated group g as the comparison group for group k. Panel B of Figure S3
plots the outcomes used in this term. Mechanically, the TWFE regression exploits this comparison
because group g’s treatment status/amount is not changing over these time periods. However, these
are post-treatment periods for group g, and parallel trends assumptions do not place restrictions on
paths of post-treatment outcomes, which are subtracted in Equation (S5). Therefore, it is undesirable
that this term shows up in the expression for βtwfe.4

3Each of the following expressions also includes a term in the denominator. Below, this term is useful for interpreting
differences across groups as partial effects of more treatment, but, for now, we largely ignore the expressions in the
denominator.

4This sort of comparison also shows up in the case with a binary, staggered treatment. See, e.g., de Chaisemartin
and D’Haultfœuille (2020), Goodman-Bacon (2021), and Borusyak, Jaravel, and Spiess (2023).
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Figure S3: Between-Timing-Group Comparisons

Notes: The figure shows the between-timing-group comparisons that average the outcomes in groups g and k across
dose levels and compare the early group to the later group (panel C) or the later group to the early group (panel D).

The final comparison that shows up in the TWFE estimator is between paths of outcomes between
“early” and “late” treated groups in their common post-treatment periods relative to their common
pre-treatment periods. In other words, this comparison comes from the “endpoints” where the two
timing groups are either both untreated or both treated with possibly different average doses.

δPOST,PRE(g, k) =
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]− E[D|G = k]

. (S6)

Figure S4 shows the outcomes that determine the comparisons that show up in this term. The reason
that this term shows up in βtwfe is that differences in the paths of outcomes between groups that
have different distributions of the treatment are informative about βtwfe. For example, if more dose
tends to increase outcomes and group g’s dose is higher on average than group k’s, then outcomes
may increase more among group g than group k resulting in δPOST,PRE(g, k) not being equal to 0.5

Next, we show how βtwfe weights these simple DiD terms together and discuss its theoretical
interpretation under parallel trends assumptions. To characterize the weights, first, define pg =

P(G = g) and

pg|{g,k} = P(G = g|G ∈ {g, k}),

which is the probability of being in group g conditional on being in either group g or k. We also
define the following weights, which measure the variance of the treatment variable used to estimate
each of the simple DiD terms in equations Equations (S3) to (S6).

wg,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

5To be more precise, this term involves comparisons between groups g and k for the group with a higher dose
on average to the group with a smaller dose on average. When E[D|G = g] > E[D|G = k], this corresponds to the
expression in Equation (S6). When E[D|G = g] < E[D|G = k], one can multiply both the numerator and denominator
by −1 so that we effectively make a positive-weight comparison for the group that experienced more dose relative to
the group that experienced less dose.
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Figure S4: Long Comparisons Between Timing Groups

Notes: The figure shows the comparisons between timing groups in the POST (k) window when both are treated with
potentially different average doses and the PRE(g) window when neither group is treated.

wg,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wk,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wlong(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t].

These weights are similar to the ones in Goodman-Bacon (2021) in the sense that they combine
the size of the sample and the variance of treatment used to calculate each simple DiD term. In
wg,within(g), for example, Var(D|G = g) measures how much the dose varies across units with G = g,
(1− Ḡg)Ḡg measures the variance that comes from timing which falls when g is closer to 0 or T , and
pg measures the share of units with G = g (i.e., subsample size). Since they only compare outcomes
between timing-groups, wg,post(g, k) and wk,post(g, k) do not contain a within-timing-group variance
of D, but they do include E[D|G = k]2 which reflects the fact that timing groups with higher average
doses get more weight. The rest of the timing weights have the same interpretation as in Goodman-
Bacon (2021). Finally, wlong(g, k) includes the square of the difference in mean doses between groups
g and k—(E[D|G = g]−E[D|G = k])2—which shows that the “endpoint” comparisons only influence
βtwfe to the extent that timing groups have different average doses. Two timing groups with the
same average dose do not contribute a δPOST,PRE(g, k) term because there is no differential change
in their doses between the PRE(g) window (when both groups are untreated) and the POST (k)

window (when both groups have E[D|G = g] = E[D|G = k]).
Our next result combines the simple DiD terms and their variance weights to provide a mechanical

decomposition of βtwfe in DiD setups with variation in treatment timing and variation in treatment
intensity.
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Proposition S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, βtwfe in Equation (S1) can be
written as

βtwfe =
∑
g∈G

wg,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
wg,post(g, k)δMID,PRE(g, k) + wk,post(g, k)δPOST,MID(g, k) + wlong(g, k)δPOST,PRE(g, k)

}
.

In addition, (i) wg,within(g) ≥ 0, wg,post(g, k) ≥ 0, wk,post(g, k), and wlong(g, k) ≥ 0 for all g ∈ G
and k ∈ G with k > g, and (ii)

∑
g∈G w

g,within(g)+
∑

g∈G
∑

k∈G,k>g

{
wg,post(g,k)(g, k)+wk,post(g, k)+

wlong(g, k)
}
= 1.

Proposition S1 generalizes the decomposition theorem for binary staggered timing designs in
Goodman-Bacon (2021) to our setup with variation in treatment intensity.6 Notice that it does not
require Assumption 2-MP(b) and is, therefore, compatible with a binary, multi-valued, continuous,
or mixed treatment. It says that βtwfe can be written as a weighted average of the four comparisons
in Equations (S3) to (S6). These weights are all positive and sum to one.

Proposition S1 provides a new, explicit description of what kinds of comparisons TWFE uses to
compute βtwfe, but it does not on its own provide guidance on how to interpret TWFE estimates.
Our results for the two-period case in the main text, for example, show that simple estimators
like δWITHIN (g) equal averages of ACRT parameters plus selection bias. Similarly, the terms that
compare outcomes across timing groups necessarily average over the dose-specific treatment effects
of units within that timing group. We analyze the theoretical interpretation of each of these simple
DiD estimands under different assumptions and then discuss what this implies about the (arguably
implicit) identifying assumptions and estimand for TWFE.

To begin we define additional weights that apply to the underlying causal parameters in the DiD
terms in Equations (S3) through (S6):

wwithin
1 (g, l) =

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
Var(D|G = g)

P(D ≥ l|G = g),

w1(g, l) =
P(D ≥ l|G = g)

E[D|G = g]
, w0(g) =

dL
E[D|G = g]

,

wacross
1 (g, k, l) =

(P(D ≥ l|G = g)− P(D ≥ l|G = k))

(E[D|G = g]− E[D|G = k])
,

w̃across
1 (g, k, l) =

P(D ≥ l|G = k)

(E[D|G = g]− E[D|G = k])
, w̃across

0 (g, k) =
dL

(E[D|G = g]− E[D|G = k])
.

In addition, define the following differences in paths of outcomes over time

πPOST (k̃),PRE(g̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

πMID(g̃,k̃),PRE(g̃)(g) = E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

6In particular, in the special case of a staggered, binary treatment, wg,within(g)δWITHIN (g) = 0 (since there is no
within-group variation in the dose in this case), and wlong(g, k)δPOST,PRE(g, k) = 0 (because the distribution of the dose
is the same across all groups). Then, Proposition S1 collapses to Theorem 1 in Goodman-Bacon (2021) because the terms
wg,post(g,k)δMID,PRE(g, k) and wk,post(g, k)δPOST,MID(g, k) correspond exactly to between-timing-group comparisons.
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πPOST (k̃),MID(g̃,k̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

)
|D = 0

]
,

and, similarly,

π
POST (k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
MID(g̃,k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
POST (k̃),MID(g̃,k̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

)
|D = 0

]
,

which are the same paths of outcomes but conditional on having dose d.
The following result is our main result on interpreting TWFE estimates with continuous treatment.

Theorem S3. Under Assumptions 1-MP, 2-MP, and 3-MP,

(1) The four comparisons in Equations (S3) to (S6) can be written as

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)

∂π
POST (g),PRE(g)
D (g, l)

∂l
dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)
∂π

MID(g,k),PRE(g)
D (g, l)

∂l
dl + w0(g)

π
MID(g,k),PRE(g)
D (g, dL)

dL

− w0(g)
πMID(g,k),PRE(g)(k)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)
∂π

POST (k),MID(g,k)
D (k, l)

∂l
dl + w0(k)

πPOST (k),MID(g,k)(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)

∂π
POST (k),PRE(g)
D (g, l)

∂l
dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

(2) If, in addition, Assumption 5-MP-Extended(a) holds, then

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)ACR

POST (g)
(g, l)dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)ACR
MID(g,k)

(g, l) dl + w0(g)
ATE

MID(g,k)
(g, dL)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,
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δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

In addition, (i) wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, and w0(g) ≥ 0, for all g ∈ G and d ∈ Dc

+ and (ii)∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and
∫ dU
dL

wacross
1 (g, k, l) dl = 1.

Part (1) of Theorem S3 links the four sets of comparisons in the TWFE estimator in Proposition S1
to derivatives of conditional expectations (this is broadly similar to Equation (B.7) in the proof of
Theorem 3.4 in the main text) along with some additional (nuisance) paths of outcomes.

Part (2) of Theorem S3 imposes the multi-period version of strong parallel trends in Assumption 5-
MP-Extended(a).7 Under Assumption 5-MP-Extended(a), δWITHIN (g) and δMID,PRE(g, k) both
deliver weighted averages of ACR-type parameters. However, δPOST,MID(g, k) and δPOST,PRE(g, k)

still involve non-negligible nuisance terms. Under Assumption 5-MP-Extended(a), the additional
term in δPOST,MID(g, k) involves the difference between treatment effects for group g in group k’s
post-treatment periods relative to treatment effects for group g in the periods after group g is treated
but before group k is treated—that is, treatment effect dynamics. Parallel trends assumptions do
not imply that this term is equal to 0. And, in the special case where the treatment is binary, this
term corresponds to the “problematic” term related to treatment effect dynamics in Goodman-Bacon
(2021).

The additional nuisance term in δPOST,PRE(g, k) involves differences in partial effects of more
treatment across groups in their common post-treatment periods. Parallel trends does not restrict
these partial effects to be equal to each other. This term does not show up in the case with a binary
treatment because, by construction, the distribution of the dose is the same across groups. It is
helpful to further consider where this expression comes from. For simplicity, temporarily suppose
that the partial effect of more dose is positive and constant across groups, time, and dose. In this
case, if group g has more dose on average than group k, then its outcomes should increase more from
group g and k’s common pre-treatment period to their common post-treatment period. This is the
comparison that shows up in δPOST,PRE(g, k). However, when partial effects are not the same across
groups and times (which is not implied by any parallel trends assumption), then, for example, it
could be the case that the partial effect of dose is positive for all groups and time periods but greater
for group k relative to group g. If these differences are large enough, it could lead to the cross-group,
long-difference comparisons in δPOST,PRE(g, k) having the opposite sign.

Next, we discuss what sort of extra conditions can (i) guarantee that βtwfe is a (positively)
weighted average of underlying causal responses or (ii) for βtwfe = ACRo. To do so, one must further
restrict different types of treatment effect heterogeneity.

7In Theorem S3-Extended below, we provide an analogous result under the parallel trends assumption in Assump-
tion 4-MP-Extended(a).
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Assumption S1 (Assumptions Limiting Treatment Effect Heterogeneity).
(a) [No Treatment Effect Dynamics] For all g ∈ G \ (T +1) and t ≥ g (i.e, post-treatment periods

for group g), ACR(g, t, d) and ATE(g, t, dL) do not vary with t.
(b) [Homogeneous Causal Responses across Groups] For all g ∈ G \ (T + 1) with t ≥ g and

k ∈ G \ (T + 1) with t ≥ k, ACR(g, t, d) = ACR(k, t, d) and ATE(g, t, dL) = ATE(k, t, dL).
(c) [Homogeneous Causal Responses across Dose] For all g ∈ G \ (T +1) with t ≥ g, ACR(g, t, d)

does not vary across d, and, in addition, ATE(g, t, dL)/dL = ACR(g, t, d).

Assumption S1 introduces three additional conditions limiting treatment effect heterogeneity. As-
sumption S1(a) imposes that, within a timing-group, the causal response to the treatment does not
vary across time which rules out treatment effect dynamics. Assumption S1(b) imposes that, for
a fixed time period, causal responses to the treatment are constant across timing-groups. Assump-
tion S1(c) imposes that, within timing-group and time period, the causal response to more dose is
constant across different values of the dose.

Proposition S2. Under Assumptions 1-MP, 2-MP, 3-MP, and 5-MP-Extended(a),

(a) If, in addition, Assumption S1(a) holds, then

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL
.

(b) If, in addition, Assumption S1(b) holds, then

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl.

(c) If, in addition, Assumption S1(a), (b) and (c) hold, then

βtwfe = ACRo.

Proposition S2 provides additional conditions under which the nuisance terms in δPOST,MID(g, k)

and δPOST,PRE(g, k) are equal to 0. For δPOST,MID(g, k), these nuisance terms will be equal to
0 if there are no treatment effect dynamics; that is, the causal response to more dose does not
vary across time. Ruling out these sorts of treatment effect dynamics is analogous to the kinds of
conditions that are required to rule out negative weights TWFE estimates with a binary treatment.
For δPOST,PRE(g, k), the nuisance terms will be equal to 0 if there are homogeneous causal responses
across groups—that the causal response to more dose is the same across groups conditional on having
the same amount of dose and being in the same time period. Neither of these assumptions is implied
by any of the parallel trends assumptions that we have considered, and they are both potentially very
strong. Therefore, under both Assumption S1(a) and (b), βtwfe is equal to a weighted average of
average causal response parameters, but these weights continue to be driven by the TWFE estimation
strategy and, like in the baseline two-period case, can continue to deliver poor estimates of the overall
average causal response to the treatment. If all of the conditions in Assumption S1(a), (b), and (c)
hold, then it implies that ACR(g, t, d) does not vary by timing group, time period, or the amount of
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dose, and part (c) of Proposition S2 says that βtwfe is equal to the overall average causal response
under these additional, strong conditions.

The results in part (2) of Theorem S3 and in Proposition S2 relied on the multi-period version
of strong parallel trends in Assumption 5-MP-Extended(a). To conclude this section, we provide a
version of Theorem S3 under the parallel trends assumption in Assumption 4-MP-Extended(a) that
only involves paths of untreated potential outcomes rather than strong parallel trends.

Theorem S3-Extended. Under Assumptions 1-MP, 2-MP, 3-MP, and 4-MP-Extended(a),

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)

(
ACRT

POST (g)
(g, l|g, l) + ∂ATT

POST (g)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)

(
ACRT

MID(g,k)
(g, l|g, l) + ∂ATT

MID(g,k)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

+ w0(g)
ATT

MID(g,k)
(g, dL|g, dL)

dL

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)

(
ACRT

POST (k)
(k, l|k, l) + ∂ATT

POST (k)
(k, l|k, h)

∂h

∣∣∣
h=l

)
dl

+ w0(k)
ATT

POST (k)
(k, dL|k, dL)

dL
− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)

(
ACRT

POST (k)
(g, l|g, l) + ∂ATT (g, l|g, h)

∂h

∣∣∣
h=l

)
dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
where the weights are the same as in Theorem S3 and satisfy the same properties.

This result is similar to part (2) of Appendix SA.3 except that ACR
·
(·, d) should be replaced by

ACRT
·
(·, d|·, d) + ∂ATT

·
(·,d|·,l)

∂l

∣∣∣
l=d

where the second term is a selection bias term, and ATE
·
(·, dL)

should be replaced by ATT
·
(·, dL|·, dL). The main additional takeaway from Theorem S3-Extended

is that, under a standard version of parallel trends, all four comparisons in Equations (S3) to (S6)
include selection bias terms.

SA.4 Discussion

The results in this section suggest four important weaknesses of TWFE estimands in a difference-in-
differences framework with multiple time periods, and variation in treatment timing and intensity.
First, all of the results in this section have used the strongest versions of the parallel trends assump-
tions discussed above (Assumptions 4-MP-Extended(a) or 5-MP-Extended(a)) which involve parallel
trends holding across all periods (including pre-treatment periods). If there are violations of parallel
trends in pre-treatment periods, these violations will contribute to βtwfe.
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Second, like the TWFE estimands considered in the main text in the case with two time periods,
TWFE estimands have weights that are driven by the estimation method. These weights may have
undesirable properties in settings where there is treatment effect heterogeneity.

Third, in addition to reasonable treatment effect parameters, TWFE estimands also include un-
desirable components due to treatment effect dynamics and heterogeneous causal responses across
groups and time periods. That these show up in the TWFE estimand is potentially problematic
and can possibly lead to very poor performance of the TWFE estimator. Ruling out these problems
requires substantially stronger conditions in addition to any kind of parallel trends assumption.

Finally, even when these extra conditions hold (i.e., the best case scenario for TWFE), if a
researcher invokes a standard parallel trends assumption, the TWFE estimand delivers weighted
averages of derivatives of ATT -type parameters which are themselves hard to interpret because, like
in the two-period case, they include both actual causal responses and selection bias terms.

Of these four weaknesses, the first three can be completely avoided by using the estimands pre-
sented in Theorem S1. These estimands rely only on parallel trends assumptions; in particular, they
are available without imposing any conditions on treatment effect dynamics or how causal responses
vary across groups. The fourth weakness, though, is a more fundamental challenge of difference-in-
differences approaches with variation in treatment intensity as comparing treatment effect parameters
across different values of the dose appears to fundamentally require imposing stronger assumptions
that rule out some forms of selection into different amounts of the treatment. Although undesirable,
we are not aware of any other practical solution to this empirically relevant DiD problem. Thus,
we urge practitioners to (i) transparently discuss their assumptions, potentially exploiting context-
specific knowledge to justify the plausibility of a stronger parallel trends assumption in the given
application or (ii) to focus on other parameters that do not involve comparisons across doses.

SB Proofs of Results from Section D and Appendix SA

This section contains the proofs of results from Appendix D in the main text and Appendix SA,
which encompasses our results on DiD with a continuous treatment and with multiple periods and
variation in treatment timing and dose intensity.

SB.1 Proof of Results from Appendix SA.2

This section proves Theorem S1 and Theorem S2; note that Theorem D.1, in the main text, corre-
sponds to part (2a) of Theorem S1 (under Assumption 5-MP-Extended(a)).

Proof of Theorem S1

Proof. For part (1a), we show the result under Assumption 4-MP-Extended(c), which is strictly
weaker than Assumption 4-MP-Extended(a). First, notice that,

ATT (g, t, d|g, d) = E[Yt(g, d)− Yt(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|G = g,D = d]
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= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g,D = d] (S7)

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality is the definition of ATT (g, t, d|g, d), the second equality holds by adding and
subtracting E[Yg−1(0)|G = g,D = d], the third equality holds by adding and subtracting E[Ys(0)|G =

g,D = d] for s = g, . . . , (t − 1), the fourth equality holds under Assumption 4-MP-Extended(c), the
fifth equality holds by canceling all the terms involving E[Ys(0)|Wt = 0] for s = g, . . . , (t − 1) (i.e.,
from the reverse of the argument for the third equality), and the last equality holds from writing the
potential outcomes in terms of their observed counterparts.

For part (1b), in Equation (S7),
t∑

s=g

E[Ys(0)−Ys−1(0)|G = g,D = d] =

t∑
s=g

E[Ys(0)−Ys−1(0)|D =

0] under Assumption 4-MP-Extended(b). Then, the result holds by otherwise following the same
arguments as in part (1a).

For part (2a), we show the result under Assumption 5-MP-Extended(c) which is strictly weaker
than Assumption 5-MP-Extended(a). Notice that,

ATE(g, t, d) = E[Yt(g, d)− Yt(0)|G = g]

= E[Yt(g, d)− Yg−1(g, d)|G = g]− E[Yt(0)− Yg−1(0)|G = g]

=

t∑
s=g

E[Ys(g, d)− Ys−1(g, d)|G = g]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g] (S8)

=
t∑

s=g

E[Ys(g, d)− Ys−1(g, d)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(g, d)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality holds by the definition of ATE(g, t, d), the second equality adds and subtracts
E[Yg−1(g, d)|G = g] (this equation also uses the no anticipation condition in Assumption 3-MP which
implies that E[Yg−1(g, d)|G = g] = E[Yg−1(0)|G = g]), the third equality holds by writing both “long
differences” as summations over “short differences”, the fourth equality holds by Assumption 5-MP-
Extended(c), the fifth equality holds by canceling all of the intermediate terms in the summations
over short differences, and the last equality holds by writing potential outcomes in terms of their
corresponding observed outcomes and is the result.

Finally, for part (2b), in Equation (S8),
t∑

s=g

E[Ys(0)−Ys−1(0)|G = g] =

t∑
s=g

E[Ys(0)−Ys−1(0)|D =

0] under Assumption 5-MP-Extended(b). The result then follows using the same subsequent argu-
ments as in part (2a).
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Proof of Theorem S2

Proof. To start with, notice that
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d

{
E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

}
(S9)

which holds because the second term does not depend on d. Thus, under Assumption 4-MP-
Extended(a), we have that

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d

where the first equality holds by Equation (S9) and Theorem S1(1a), and the second equality holds
by the linearity of differentiation and the definition of ACRT (g, t, d|g, d).

Under Assumption 5-MP-Extended(2a), we have that
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATE(g, t, d)

= ACR(g, t, d)

where the first equality holds by Equation (S9) and Theorem S1(c), and the second equality holds
by the definition of ACR(g, t, d). This completes the proof.

SB.2 Proofs of Results from Appendix SA.3

This section contains the proofs for interpreting TWFE regressions in the case with a continuous
treatment, multiple periods, and variation in treatment timing as in Appendix SA.3.

Before proving the main results in this section, we introduce some additional notation. Let

v(g, t) = 1{t ≥ g} − Ḡg (S10)

where the term 1{t ≥ g} is equal to one in post-treatment time periods for units in group g and
recalling that we defined Ḡg = T−g+1

T which is the fraction of periods that units in group g are
exposed to the treatment (and notice that this latter term does not depend on the particular time
period t). Further, notice that v(g, t) is positive in post-treatment time periods and negative in pre-
treatment time periods for units in a particular group. Finally, also note that, for the “never-treated”
group, g = T + 1, so that both terms in the expression for v are equal to 0.

Furthermore, recall that, for 1 ≤ t1 ≤ t2 ≤ T , we defined

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t

where below (and following the notation used throughout the paper), we sometimes leave the subscript
i implicit.

We next state and prove some additional results that are helpful for proving the main results. The
first lemma re-writes (overall) expected dose experienced in period t adjusted by the overall expected
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dose (across periods and units) in a form that is useful in proving later results.

Lemma S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

Proof. First, notice that

E[Wt] =
∑
g∈G

∫
D
E[Wt|G = g,D = d] dFD|G(d|g)pg

=
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg (S11)

where the first equality holds by the law of iterated expectations and the second equality holds
because, after conditioning on group and dose, Wt is fully determined. Thus,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg −

1

T

T∑
s=1

∑
g∈G

∫
D
d1{s ≥ g} dFD|G(d|g)pg

=
1

T

T∑
s=1

∑
g∈G

∫
D
d (1{t ≥ g} − 1{s ≥ g}) dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1

T

T∑
s=1

1{t ≥ g} − 1{s ≥ g}

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1{t ≥ g} − T − g + 1

T

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

where the first equality applies Equation (S11) to both terms, the second equality combines terms by
averaging the first term across time periods, the third equality re-orders the summations/integrals,
the fourth equality holds because 1{t ≥ g} does not depend on s and by counting the fraction of
periods where s ≥ g, and the last equality holds by the definition of v(g, t).

The next lemma provides an intermediate result for the expression for the numerator of βtwfe in
Equation (S2).

Lemma S2. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Yi,tẄi,t] =
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}
Proof. Starting with the term on the left-hand side, we have that

1

T

T∑
t=1

E[Yi,tẄi,t]

=
1

T

T∑
t=1

{
E[Yi,tWi,t]− E[Yi,tW̄i]− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}
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=
1

T

T∑
t=1

{
E[YtD1{t ≥ G}]− E

[
YtD

T −G+ 1

T

]
− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D

(
E[Ytd1{t ≥ g}|G = g,D = d]− E

[
Yt

T − g + 1

T
d
∣∣∣G = g,D = d

])
dFD|G(d|g)pg

− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

where the first equality holds by the definition of Ẅi,t, the second equality holds by plugging in for
Wi,t and W̄i, the third equality holds by the law of iterated expectations, the fourth equality holds by
the definition of v(g, t), the fifth equality holds by Lemma S1, and the sixth equality just combines
terms.

Next, based on the result in Lemma S2, we can write the numerator in the expression for βtwfe

as

1

T

T∑
t=1

E[Yi,tẄi,t]

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg (S12)

+
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg (S13)

where the first equality holds from Lemma S2 and the second equality holds by adding and subtracting
E[Yt|G = g].

The expression in Equation (S12) involves comparisons between units in the same group but that
have different doses. The expression in Equation (S13) involves comparisons across different groups.
We consider each of these terms in more detail below.

Lemma S3. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg
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=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg

Proof. Notice that

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
1

T

T∑
t=1

{∑
g∈G

E[Yt(D − E[D|G = g])|G = g]v(g, t)pg

}

=
∑
g∈G

{
1

T

T∑
t=1

E[Yt(D − E[D|G = g])|G = g]v(g, t)

}
pg

=
∑
g∈G

{
− 1

T

(T − g + 1)

T

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

+
1

T

(g − 1)

T

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
1

T − g + 1

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

− 1

g − 1

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

)}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg

=
∑
g∈G

{
(1− Ḡg)Ḡg

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg

where the first equality holds by the law of iterated expectations (and combining terms involving d

and Yt), the second equality changes the order of the summations, the third equality holds by splitting
the summation involving t in time period g and plugs in for v(g, t) (which is constant within group
g and across time periods from 1, . . . , g − 1 and from g, . . . , T ), the fourth equality multiplies and
divides by terms so that the inside expressions can be written as averages, the fifth equality holds by
changing the order of the expectation and averaging over time periods, the sixth equality holds by
the definition of Ḡg, and the last equality holds by the definition of covariance.

Lemma S3 shows that part of the TWFE estimator comes from a weighted average of post- vs.
pre-treatment outcomes within group but who experienced different doses. In particular, notice that
for units in group g, Ȳ POST (g)

i is their average post-treatment outcome while Ȳ
PRE(g)
i is their average

pre-treatment outcome.
Next, we consider the expression from Equation (S13) above which arises from differences in
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outcomes across groups. We handle this term over several following results.

Lemma S4. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

Proof. Notice that

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]− E[Yt]

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k]pk

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G

E[D|G = g]v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}
where the first equality holds by integrating over D, the second equality holds by the law of iterated

expectations, the third equality holds by combining terms, and the last equality holds because all
combinations of g and k occur twice.

Lemma S4 is helpful because it shows that the cross-group part of the TWFE estimator can be
written as comparisons for each group relative to later-treated groups.

Next, we provide an important intermediate result. Before stating this result, we define the
following weights

w̃g,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

w̃g,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)pkpg

w̃k,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)pkpg

w̃long(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)pkpg

which correspond to wg,post, wk,post, and wlong(g, k) above except they do not divide by
T−1

∑T
t=1 E[Ẅ 2

i,t]. In addition, notice that

E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

=


−E[D|G = g]Ḡg + E[D|G = k]Ḡk for t < g < k

E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk for g ≤ t < k

E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk) for g < k ≤ t

(S14)
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which holds by the definition of v and is useful for the proof of the following lemma.

Lemma S5. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]}
Proof. The result holds as follows

1

T

T∑
t=1

{ ∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
1

T

T∑
t=1

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
1

T

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) g−1∑
t=1

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) k−1∑
t=g

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) T∑
t=k

(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g](Ḡg − Ḡk) + (E[D|G = k]− E[D|G = g])Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
(E[D|G = g]− E[D|G = k])(1− Ḡg)− E[D|G = k](Ḡg − Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

])}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

])}
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where the first equality uses the result in Lemma S4, the second equality changes the order of the
summations (splitting them at g and k where the values of v(g, t) and v(k, t) change) and uses
Equation (S14), the third equality holds by averaging over time periods (which involves multiplying
and dividing by g − 1 in the first line, multiplying and dividing by k − g in the second line, and
multiplying and dividing by T − k+1 in the last line), the fourth equality rearranges the expressions
for the weights, the fifth equality holds by rearranging terms with common weights, and the last
equality holds by the definitions of w̃g,post, w̃k,post, and w̃long and by noticing that

pkpg = (pg + pk)
2pg|{g,k}(1− pg|{g,k})

which holds by multiplying and dividing both pk and pg by (pg + pk) and by the definition of pg|{g,k}.

The result in Lemma S5 is very closely related to the result on interpreting TWFE regressions
with a binary treatment and multiple time periods and variation in treatment timing in Goodman-
Bacon (2021).8 In particular, it says that, even with a continuous or multi-valued discrete treatment,
the TWFE regression estimator involves comparisons between (i) the path of outcomes for units that
become treated relative to the path of outcomes for units that are not treated yet, (ii) the path of
outcomes for units that become treated relative to the path of outcomes for units that have already
been treated, and (iii) comparisons of the paths of outcomes across groups from their common pre-
treatment periods to their common post-treatment periods. Intuitively, the first set of comparisons
is very much in the spirit of DiD, but, as we show below, the second and third sets of comparisons
are not (except under additional specialized conditions).

Lemma S6. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅ 2
i,t] =

∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
Proof. To start with, notice that E[Ẅ 2

i,t] = E[Wi,tẄi,t]. Then, we can apply the arguments of Lem-
mas S2 to S5 but with Wi,t replacing Yi,t. This implies that

1

T

T∑
t=1

E[Ẅ 2
i,t]

=
∑
g∈G

w̃g,within(g)
Cov(W̄POST (g) − W̄PRE(g), D|G = g)

Var(D|G = g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

E
[
(W̄MID(g,k) − W̄PRE(g))|G = g

]
− E

[
(W̄MID(g,k) − W̄PRE(g))|G = k

]
E[D|G = g]

+ w̃k,post(g, k)
E
[
(W̄POST (k) − W̄MID(g,k))|G = k

]
− E

[
(W̄POST (k) − W̄MID(g,k))|G = g

]
E[D|G = k]

8One difference worth noting is that the weights are slightly different due to the terms involving E[D|G = g] and
E[D|G = k]. With a binary treatment, these expectations are equal to each other by construction, but with a continuous
treatment these terms are no longer generally equal to each other. This also implies that the third term does not show
up in the case with a binary treatment.
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+ w̃long(g, k)
E
[
(W̄POST (k) − W̄PRE(g))|G = g

]
− E

[
(W̄POST (k) − W̄PRE(g))|G = k

]
E[D|G = g]− E[D|G = k]

}
=
∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
where the last equality holds by noting that W̄ = D in post-treatment periods and W̄ = 0 in
pre-treatment periods, and then by canceling terms.

Proof of Proposition S1

Proof. Proposition S1 immediately holds by combining the results in Lemma S2, from Equations (S12)
and (S13), and by Lemmas S3 to S5 (which all concern the numerator in the expression for βtwfe in
Equation (S2)), and then dividing by (1/T )

∑T
t=1 E[Ẅ 2

i,t] (which corresponds to the denominator in
the expression for βtwfe in Equation (S2)) using the result in Lemma S6. That the weights are all
positive holds immediately by their definitions. That they sum to one holds by the definitions of the
weights and is an immediate implication of Lemma S6.

Next, we move to proving Theorem S3. To do this we provide expressions for each of the com-
parisons that show up in Proposition S1 in terms of derivatives of paths of outcomes. These results
invoke Assumption 2-MP(b) and, therefore, use that the treatment is actually continuous, but they
do not invoke any parallel trends assumptions. That said, it would be straightforward to adapt these
results to the case with a discrete multi-valued treatment along the lines of the baseline two-period
case considered in the main text.

It is also useful to note that

∂π
POST (k̃),PRE(g̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

,

∂π
MID(g̃,k̃),PRE(g̃)
D (g, d)

∂d
=

E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

,

∂π
POST (k̃),MID(g̃,k̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

)
|G = g,D = d

]
∂d

,

which holds because the second parts of each πD term do not vary with the dose.
Next, we consider a result for the numerator (which is the main term) of δWITHIN (g) in Equa-

tion (S3).

Lemma S7. Under Assumptions 1-MP, 2-MP, and 3-MP,

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
=

∫ dU

dL

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
P(D ≥ l|G = g)

∂E[Ȳ POST (g) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

Proof. First, notice that

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
= E

[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

]
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Then, the proof follows essentially the same arguments as in Theorem 3.4(a) in the main text with
Ȳ POST (g) − Ȳ PRE(g) replacing ∆Y and the other arguments relating to the distribution of the dose
holding conditional on being in group g. The second term, involving dL, in Theorem 3.4(a) does not
show up here as, by construction, there are no untreated units in group g.

Lemma S7 says that part of δWITHIN (g) in the TWFE regression estimator comes from a weighted
average of ∂E[Ȳ POST (g)−Ȳ PRE(g)|G=g,D=d]

∂d .
Next, we consider the numerator (which is the main term) in the expression for δMID,PRE(g, k) in

Equation (S4). This term is quite similar to the baseline two-period case considered in Theorem 3.4(a)
because units in group k have not been treated yet.

Lemma S8. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL
Proof. To start with, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

])
=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

where the first equality holds by adding and subtracting E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

]
. For the

second equality, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

]
= E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
+ E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

]
Moreover,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
=

∫ dU

dL

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = d

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
dFD|G(d|g)
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=

∫ dU

dL

∫ dU

dL

1{l ≤ d}
∂E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = l

]
∂l

dl dFD|G(d|g)

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

where the first equality holds by the law of iterated expectations, the second equality holds by the
fundamental theorem of calculus, and the last equality holds by changing the order of integration and
simplifying.

Combining the above expressions implies the result.

Next, we consider the numerator (which is the main term) of δPOST,MID(g, k) in Equation (S5)
which comes from comparing paths of outcomes for newly treated groups relative to already-treated
groups.

Lemma S9. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ MID(g,k)|D = 0]

dL

−
{
E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

−
(
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

)}
Proof. Notice that

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

])

−

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

])

=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

])
(S15)

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

])}

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl (S16)

+ dL
E[Ȳ POST (k) − Ȳ MID(g, k)|G = g,D = dL]− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
dL
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−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|D = 0

])}
where the first equality holds by adding and subtracting E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
, the

second equality holds by adding and subtracting both E
[
Ȳ PRE(g)|G = g

]
and E

[
Ȳ PRE(g)|D = 0

]
,

and the last equality holds by applying the same sort of arguments as in the proof of Lemma S8.

The expression in Lemma S9 appears complicated and is worth explaining in some more detail.
Consider Equation (S15) in the proof of Lemma S9. There are three parts to this expression. The first
part compares the path of outcomes in post-treatment periods relative to some pre-treatment periods
for units in group k to the path of outcomes for units that never participate in the treatment. This
sort of comparison is very much in the spirit of DiD and will correspond to a reasonable treatment
effect parameter under appropriate parallel trends assumptions. Similarly, under suitable parallel
trends assumptions, the terms in the second and third lines will correspond to treatment effects for
group g between periods k and T (the second line) and treatment effects for group g between periods
g and k − 1 (the third line). Therefore, the difference between these terms can be thought of as
some form of treatment effect dynamics. That means, in general, for this overall term to correspond
to a treatment effect parameter for group k, there needs to be no treatment effect dynamics for
group g—and, to be clear, treatment effect dynamics are not ruled out by any of the parallel trends
assumptions that we have considered above.

Finally, we consider the numerator (which is the main term) of δPOST,PRE(g, k) in Equation (S6).

Lemma S10. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

]
=

∫ dU

dL

(P(D ≥ l|G = g)− P(D ≥ l|G = k))
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

−

{∫ dU

dL

P(D ≥ l|G = k)

(
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
− ∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l

)
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

}
.

Proof. First, by adding and subtracting terms

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])
.

Then, using similar arguments as in Lemma S8 above, one can show that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
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=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

and that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

Then, the result holds by adding and subtracting
∫ dU
dL

P(D ≥ l|G = k)∂E[Ȳ
POST (k)−Ȳ PRE(g)|G=g,D=l]

∂l dl

and combining terms.

Proof of Part (1) of Theorem S3

Proof. Starting from the result in Proposition S1, the expression for δWITHIN (g) comes from its
definition, the result in Lemma S7, and the definition of the weights wwithin

1 (g, l). The expres-
sion for δMID,PRE(g, k) comes from its definition, the result in Lemma S8, and the definitions
of w1(g, l) and w0(g). The expression for δPOST,MID(g, k) comes from combining its definition
with the result in Lemma S9, and the definitions of w1(k, l) and w0(k). Finally, the expression
for δPOST,PRE(g, k) comes from its definition, the result in Lemma S10, and the definitions of
wacross
1 (g, k, l), w̃across

1 (g, k, l), and w̃across
0 (g, k).

That wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, w0(g) ≥ 0 for all g ∈ G and d ∈ Dc

+ all hold immediately
from the definitions of the weights. That

∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and∫ dU
dL

wacross
1 (g, k, l) dl = 1 hold from the same sorts of arguments used to show that the weights

integrate to 1 in the proof of Theorem 3.4(a).

Notice that none of the previous results have invoked any sort of parallel trends assumption.
Next, we push forward the previous results once a researcher invokes parallel trends assumptions;
in Theorem S3, we consider the case where the researcher invoked Assumption 5-MP-Extended(a),
but here we handle both that assumption and Assumption 4-MP-Extended(a) (as in Theorem S3-
Extended). To further understand this, for 1 ≤ t1 < t2 ≤ T define

Ȳ
(t1,t2)
i (g, d) =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t(g, t, d)

which averages potential outcomes from time periods t1 to t2 for unit i if they were in group g and
experienced dose d. Note that Ȳ

(t1,t2)
i = Ȳ

(t1,t2)
i (Gi, Di). Next, for t1 ≤ t2, define

ATT
(t1,t2)(g, d|g, d) = 1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d|g, d)

32



which is the average treatment effect experienced by units in group g who experienced dose d averaged
across periods from t1 to t2. Likewise, define

ATE
(t1,t2)(g, d) =

1

t2 − t1 + 1

t2∑
t=t1

ATE(g, t, d)

which is the average treatment effect of dose d among all units in group g averaged across periods
from t1 to t2. An alternative expression for ATT

(t1,t2)(g, d|g, d) is given by

ATT
(t1,t2)(g, d|g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
which holds by the definition of ATT (g, t, d|g, d) and changing the order of the expectation and
the average over time periods; here, E[Ȳ (t1,t2)(0)|G = g,D = d] is the average outcome that units in
group g that experienced dose d would have experienced if they had not participated in the treatment
between time periods t1 and t2. Similarly, for ATE

(t1,t2)(g, d),

ATE
(t1,t2)(g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g

]
In addition, define

ACRT
(t1,t2)(g, d|g, d) = ∂ATT (g, l|g, d)

∂l

∣∣∣
l=d

and ACR
(t1,t2)(g, d) =

∂ATE(g, d)

∂d

which are the average causal response to a marginal increase in the dose among units in group g

conditional on having dose experienced dose d (for ACRT (g, d|g, d)) and the average causal response
to a marginal increase in the dose among all units in group g.

The next result connects derivatives of conditional expectations to ACRT and ACR parameters
under parallel trends assumptions. This is similar to Theorems 3.2 and 3.3 in the main text and to
Theorem S2 above.

Lemma S11. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T

(i.e., t1 and t2 are pre-treatment periods for group g, and t3 and t4 are post-treatment periods for
group g), and for d ∈ Dc

+,

(1) If, in addition, Assumption 4-MP-Extended(a) holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d|g, d) + ∂ATT

(t3,t4)(g, d|g, l)
∂l

∣∣∣
l=d︸ ︷︷ ︸

selection bias

(2) If, in addition, Assumption 5-MP-Extended(a) holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACR
(t3,t4)(g, d)

Proof. For part (1), notice that, for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T (i.e., for group g, t1 and t2 are
pre-treatment time periods while t3 and t4 are post-treatment time periods), we can write

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g,D = d

]
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− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= ATT

(t3,t4)(g, d|g, d)

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = d

]
, and the

last equality holds by the definition of ATT (t3,t4)(g, d|g, d).
This equation looks very similar to DiD-type equations in simpler cases such as when there are two

periods and two groups. The left-hand side is immediately identified. The right-hand side involves
a causal effect parameter of interest and an unobserved path of untreated potential outcomes that
would typically be handled using a parallel trends assumption.

In particular, under Assumption 4-MP-Extended(a) (though notice that Assumption 4-MP-
Extended(b) and (c) are not generally strong enough here),

E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
which, importantly, does not vary across d or g.

This suggests that, under Assumption 4-MP-Extended(a),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= ATT

(t3,t4)(g, d|g, d)− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
Taking derivatives of both sides of the previous equation with respect to d implies the result.

For part (2), notice that,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g

]
+ E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
= ATE

(t3,t4)(g, d) + E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP-Extended(a), the third equality holds
by adding and subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by the definition of
ATE

(t3,t4)(g, d) and by Assumption 5-MP-Extended(a). Taking derivatives of both sides implies the
result for part (2).

The result in Lemma S11 says that, under Assumption 4-MP-Extended(a), the derivative of the
path of outcomes (averaged over some post-treatment periods) relative to some pre-treatment periods
corresponds to averaging ACRT (g, t, d|g, d) across post-treatment time periods plus the derivative
of an averaged selection bias-type across some post-treatment time periods for group g. Similarly,
under Assumption 5-MP-Extended(a), the derivative of the path of average outcomes in some post-
treatment periods relative to average outcomes in some pre-treatment periods corresponds to an
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average of ACR(g, d) across the same post-treatment time periods.

Lemma S12. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 < k

(i.e., t1 and t2 are pre-treatment periods for both groups g and k, group g is treated before group k,
and t3 and t4 are post-treatment periods for group g but pre-treatment periods for group k),

(1) If, in addition, Assumption 4-MP-Extended(a) holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL|g, dL)
dL

(2) If, in addition, Assumption 5-MP-Extended(a) holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATE

(t3,t4)(g, dL)

dL

Proof. For part (1), notice that

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g,D = dL

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATT

(t3,t4)(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = dL

]
, and the

last equality holds by the definition of ATT (t3,t4)(g, dL) and because the difference between the two
terms involving paths of untreated potential outcomes on the second line of the previous equality is
equal to 0 under Assumption 4-MP-Extended(a). Then, the result holds by multiplying and dividing
by dL.

For part (2),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATE

(t3,t4)(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP-Extended(a), the third equality holds
by adding and subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by Assumption 5-MP-
Extended(a). The result holds by multiplying and dividing by dL.
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Proof of Part (2) of Theorem S3

Proof. The result holds immediately by using the results of Lemmas S11 and S12 in each of the
expressions for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of
Theorem S3.

Proof of Proposition S2

Proof. For part (a), we consider the nuisance term involving πPOST (k),PRE(g)(g)−πMID(g,k),PRE(g)(g)

in the expression for δPOST,MID(g, k) in part (2) of Theorem S3. Then, using similar arguments as
in Lemma S8 and then under Assumption 5-MP-Extended(a), it follows that

πPOST (k),PRE(g)(g) = E
[
Ȳ POST (k) − Ȳ PRE(g)|G = g

]
− E

[
Ȳ POST (k) − Ȳ PRE(g)|D = 0

]
=

∫ dU

dL

P(D ≥ l|G = g)ACR
POST (k)

(g, l) dl + dL
ATE

POST (k)
(g, dL)

dL

and that

πMID(g,k),PRE(g)(g) = E
[
Ȳ MID(g,k) − Ȳ PRE(g)|G = g

]
− E

[
Ȳ MID(g,k) − Ȳ PRE(g)|D = 0

]
=

∫ dU

dL

P(D ≥ l|G = g)ACR
MID(g,k)

(g, l) dl + dL
ATE

MID(g,k)
(g, dL)

dL

Under Assumption S1(a), ACR(g, t, d) and ATE(g, t, dL) do not vary over time which implies
that, for all g ∈ G and k ∈ G with k > g, ACR

POST (k)
(g, l) = ACR

MID(g,k)
(g, l) for all

l ∈ Dc
+ and ATE

POST (k)
(g, dL) = ATE

MID(g,k)
(g, dL). This implies that πPOST (k),PRE(g)(g) =

πMID(g,k),PRE(g)(g) which implies the result for part (a).

For part (b), we consider the two nuisance terms in the expression for δPOST,PRE(g, k) in part
(2) of Theorem S3. For the first one, notice that, under Assumption 5-MP-Extended(a),

∂π
POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l
= ACR

POST (k)
(k, l)−ACR

POST (k)
(g, l)

= 0

for l ∈ Dc
+ and where the second equality holds by Assumption S1(b) (which implies that, for a

particular time period, ACR(g, t, d) does not vary across groups).
For the second nuisance term, the same sort of arguments imply that

π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL
=

ATE
POST (k)

(k, dL)−ATE
POST (k)

(g, dL)

dL

= 0

under Assumption S1(b).

Finally, for part (c), under Assumption S1(a), (b), and (c), ACR(g, t, d) does not vary across
groups, time periods, or dose; since this does not vary, we denote it by ACR for the remainder of the
proof. Moreover, from Theorem S3, we have that

∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl+w0(g) = 1,
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and that
∫ dU
dL

wacross
1 (g, k, l) = 1. From the first two parts of the current result, we also have that

the nuisance paths of outcomes in δPOST,MID(g, k) and δPOST,PRE(g, k) are both equal to 0 under
Assumption S1(a) and (b). This implies that, under the conditions for part (c), δWITHIN (g) =

δMID,PRE(g, k) = δPOST,MID(g, k) = δPOST,PRE(g, k) = ACR. Finally, from Proposition S1, we
have that βtwfe is a weighted average of δMID,PRE(g, k), δPOST,MID(g, k), δPOST,MID(g, k), and
δPOST,PRE(g, k). That these are all equal to each other implies that βtwfe = ACR = ACRo.

Proof of Theorem S3-Extended

Proof. The result holds immediately by plugging in the results of part (1) of Lemmas S11 and S12 for
δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of Theorem S3.

SC Additional Theoretical Results

This appendix provides (and proves) a number of additional results that were referred to in the main
text.

SC.1 No Untreated Units

This section considers the causal interpretation of comparisons of paths of outcomes across dose
groups in settings with no untreated units under different versions of the parallel trends assumption.

Proposition S3. Under Assumptions 1, 2, 3, and 4,9 and for (h, l) ∈ D+ ×D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=2(0)|D = h]− E[Yt=2(l)− Yt=2(0)|D = l]

+
(
E[Yt=2(0)− Yt=1(0)|D = h]− E[Yt=2(0)− Yt=1(0)|D = l]

)
= ATT (h|h)−ATT (l|l)

where the first equality holds by plugging in potential outcomes for observed outcomes, the second
equality holds by adding and subtracting E[Yt=2(0)|D = h] and E[Yt=2(0)|D = l], and the last equality
holds by the definition of ATT (d|d) and by Assumption 4.

The result in Proposition S3 is the same as in Theorem 3.2(b) in the main text though the proof
technique is different here as there does not exist an untreated comparison group in the setting
considered here.

9To be fully precise, Assumption 2 needs to be modified here to allow for no untreated units. Likewise, the parallel
trends assumption in Assumption 4 does not immediately apply to this setting because P(D = 0) = 0 here. Instead, by
parallel trends, we mean that E[Yt=2(0)− Yt=1(0)|D = d] = E[Yt=2(0)− Yt=1(0)] which says that the path of untreated
potential outcomes is the same across all dose groups. We do not state this as a separate assumption partly for brevity
but also because, in a setting where P(D = 0) > 0, the condition here is simply an alternative way to write Assumption 4.
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Next, we provide an analogous result under strong parallel trends.

Proposition S4. Under Assumptions 1, 2, 3, and 5, and for (h, l) ∈ D+ ×D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATE(h)−ATE(l)

Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=1(0)]− E[Yt=2(l)− Yt=1(0)]

= E[Yt=2(h)− Yt=2(0)]− E[Yt=2(l)− Yt=2(0)]

= ATE(h)−ATE(l)

where the first equality holds by replacing observed outcomes with corresponding potential outcomes,
the second equality holds by Assumption 5, the third equality holds by canceling the E[Yt=1(0)] terms
from the previous line and by adding and subtracting E[Yt=2(0)], and the last equality holds by the
definition of ATE(d).

SC.2 Additional TWFE Decomposition Results

This section provides some extensions and additional details related to the TWFE decompositions
discussed in Section 3.3 in the main text.

Additional Results for TWFE Levels Decomposition

This first part of this section derives the expression for βtwfe in Equation (3.1) in the main text which
relates βtwfe to a weighted average of “more treated” units (units that experienced a dose larger than
E[D]) relative to “less treated” units (units that were untreated or experienced a dose smaller than
E[D]) scaled by a weighted average of the difference in treatment experienced by these two groups.
Recalling that Theorem 3.4(b) in the main text showed that the “weights” integrated to 0, the second
part of this section integrates separately the positive and negative parts of those weights (which are
separated on the basis of whether or not d is greater than the mean dose E[D]). The takeaway is that
the positive weights do not integrate to 1 (nor do the negative weights integrate to −1), but rather
they integrate to the reciprocal of the weighted distance between the effective treated and effective
comparison group discussed in the main text. This provides an explicit connection between the levels
decomposition in Theorem 3.4 and the alternative expression for βtwfe provided in Equation (3.1) in
the main text.

Corollary S1. Under Assumptions 1, 2(a), and 3,

βtwfe =
E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆D

∣∣∣D ≤ E[D]
] . (S17)
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If, in addition, Assumption 4 also holds, then

βtwfe =
E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆D

∣∣∣D ≤ E[D]
] . (S18)

where

wbin
1 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D > E[D]
]

wbin
0 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D ≤ E[D]
]

which satisfy E
[
wbin
1 (D)

∣∣D > E[D]
]
= E

[
wbin
0

∣∣D ≤ E[D]
]
= 1.

Proof. To start with, recall that

βtwfe =
E[(D − E[D])∆Y ]

Var(D)
=:

βnum
βden

where we consider the numerator and denominator separately below. Next, notice that

0 = E[(D − E[D])]

= E
[
(D − E[D])

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) + E

[
(D − E[D])

∣∣∣D > E[D]
]
P(D > E[D])

where the second equality holds by the law of iterated expectation. Rearranging the previous expres-
sion we have that

E
[
|D − E[D]|

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) = E

[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D]) =: δ

where the equality uses that the sign of (D−E[D]) is fully determined in both conditional expectations.
Next, similar to above, split the numerator of βtwfe on the basis of whether or not D > E[D]:

βnum = E
[
(D − E[D])∆Y

∣∣∣D > E[D]
]
P(D > E[D]) + E

[
(D − E[D])∆Y

∣∣∣D ≤ E[D]
]
P(D ≤ E[D])

and, now consider,

βnum
δ

= E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D > E[D]
]∆Y

∣∣∣D > E[D]

]
− E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D ≤ E[D]
]∆Y

∣∣∣D ≤ E[D]

]
= E

[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

(S19)

which uses the two different expressions for δ given above. Also, notice that it also immediately
follows that E[wbin

1 (D)|D > E[D]] = E[wbin
0 |D ≤ E[D]] = 1. Thus, βnum/δ can be thought of as a

weighted average of the change in outcomes for units with D > E[D] relative to a weighted average
of the change in outcomes for units with D ≤ E[D], where the weights are larger for units with values
of D further away from E[D].

Similarly, since Var(D) = E[(D − E[D])D] we can apply the same argument to the denominator,
and show that

βden
δ

= E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

(S20)
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This can be thought of as a weighted average of D for units with D > E[D] relative to units with
D ≤ E[D], or, in other words, the distance between the mean of D for the “effective” treated group
relative to the “effective” comparison group given the weighting scheme discussed above. Taking the
ratio of Equations S19 and S20 completes the proof for the expression in Equation (S17). That the
weights are positive and have mean one follows immediately from their definitions. The result in
Equation (S18) holds because

E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
= E

[
wbin
1 (D)E[∆Y |D]

∣∣∣D > E[D]
]

= E
[
wbin
1 (D)

(
E[∆Y |D]− E[∆Y |D = 0]

)∣∣∣D > E[D]
]
+ E[∆Y |D = 0]

= E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
+ E[∆Y |D = 0] (S21)

where the first equality holds by the law of iterated expectations, the second equality holds by adding
and subtracting E[∆Y |D = 0] and because E[∆Y |D = 0] is non-random and E

[
wbin
1 (D)

∣∣∣D > E[D]
]

has mean one, and the last equality holds under Assumption 4. The same sort of argument can be
used to show that

E
[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]
= E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]
+ E[∆Y |D = 0] (S22)

where, by construction, ATT (0|0) = 0. Taking the difference between the expressions in Equa-
tions (S21) and (S22) and then combining these expressions with the above results for Equation (S17)
completes the proof for the expression in Equation (S18).10

Corollary S2. Under Assumptions 1, 2(a), 3, and 4,

wlev
0 +

∫ E[D]

dL

wlev
1 dl =

∫ dU

E[D]
wlev
1 (l) dl =

1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where wbin
1 and wbin

0 are defined in Corollary S1.

Proof. We showed that wlev
0 +

∫ E[D]
dL

wlev
1 (l) dl =

∫ dU
E[D]w

lev
1 (l) dl in Theorem 3.4(b). Therefore, consider∫ dU

E[D]
wlev
1 (l) dl =

∫ dU

E[D]

(l − E[D])

Var(D)
fD(l) dl

=
E
[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D])

Var(D)

=
δ

βden

=
1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where the first equality holds by the definition of wlev
1 (l), the second equality holds by the law of

iterated expectations and because (D−E[D]) is positive conditional on D > E[D], the third equality
holds from the expressions for δ and βden in the proof of Corollary S1, and the last equality holds by

10Notice that if we were to invoke Assumption 5, a result analogous to the one in Equation (S18) holds with ATE(D)
replacing ATT (D|D).
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Equation (S20) above. This completes the proof.

Scaled-Levels Decomposition for Fixed Dose

Next, we consider interpreting βtwfe as ATT (d)/d for some particular fixed value of d. This is similar
to the scaled-level effects discussed in Section 3.3 in the main text except for that we fix d instead of
relating βtwfe to a weighted average of this type of scaled level effect across all values of the dose.

In this section and the next, we define the following weights

wdiff (d1, d2) :=
1

d2 − d1

ws,+
1 (d) :=

d− dL
d

Also, recall that we defined m∆(d) = E[∆Y |D = d] in the main text—we use this shorthand notation
in the results below.

Proposition S5. Under Assumptions 1, 2(a), 3, and 4,

ATT (d|d)
d

− βtwfe =
(
1− ws,+

1 (d)
)ATT (dL|dL)

dL

(
1− wacr

0(
1− ws,+

1 (d)
))︸ ︷︷ ︸

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)

︸ ︷︷ ︸ dl
−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.
If Assumption 5 holds instead of Assumption 4, then the same sort of result holds with ATE(d)

replacing ATT (d|d) on the LHS of the previous equation and with m′
∆(l) = ACR(l) on the RHS of

the previous equation.

Proof. To start with, consider the path of outcomes experienced by dose group d relative to the
untreated group scaled by d:

m∆(d)−m∆(0)

d
=

m∆(d)−m∆(dL)

d
+

m∆(dL)−m∆(0)

d

=
(d− dL)

d

m∆(d)−m∆(dL)

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

=
(d− dL)

d

∫ d
dL

m′
∆(l) dl

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

= ws,+
1 (d)

∫ d

dL

wdiff (d, dL)m
′
∆(l) dl +

(
1− ws,+

1 (d)
)m∆(dL)−m∆(0)

dL
(S23)

where the first equality holds by adding and subtracting m∆(dL)/d, the second equality holds by
multiplying and dividing the first term by (d − dL) and the second term by dL, the third equality
holds by the fundamental theorem of calculus, and the last line holds by the definitions of wdiff and
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ws,+
1 . Further, notice that the weights integrate/sum to 1:

ws,+
1 (d)

∫ d

dL

wdiff (d, dL) dl +
(
1− ws,+

1 (d)
)
=

(d− dL)

d

1

d− dL

∫ d

dL

dl︸ ︷︷ ︸
=1

+
dL
d

= 1

which suggests interpreting (m∆(d)−m∆(0))/d as an average of derivative-type terms. Then, using
a similar argument for βtwfe as the one used in Equation (S26) below and combining it with the
expression in Equation (S23), we have that

m∆(d)−m∆(0)

d
− βtwfe =

(
1− ws,+

1 (d)
)(m∆(dL)−m∆(0))

dL

(
1− wacr

0(
1− ws,+

1 (d)
))

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)
dl

−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
As in Theorem 3.1, under Assumption 4, m∆(d) − m∆(0) = ATT (d|d), and, as in Theorem 3.2,
m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

(notice that this term includes selection bias). Under Assump-
tion 5, m∆(d)−m∆(0) = ATE(d2) and m′

∆(l) = ACR(l). This completes the proof.

In other words, in general, βtwfe is not equal to ATT (d|d)/d (under parallel trends) or ATE(d)/d

(under strong parallel trends) for two reasons: (i) they put different weights on the same effects (the
underlined terms above), and (ii) the value of βtwfe additionally depends on effects of the treatment
for doses greater than d (the third term, in brackets, in the proposition).

Scaled-2× 2 Decomposition for Fixed Doses

Finally, we consider interpreting βtwfe as ATT (d2|d2)−ATT (d1|d1)
d2−d1

or ATE(d2)−ATE(d1)
d2−d1

for two fixed doses
d1 and d2 that satisfy dL < d1 < d2 < dU . This is similar to the scaled 2 × 2 effects discussed in
Section 3.3 except for that here we fix the values of d1 and d2 rather than relating βtwfe to a weighted
average of all possible scaled 2× 2 effects.

Proposition S6. Under Assumptions 1, 2(a), 3, and 4 and for dL < d1 < d2 < dU ,
ATT (d2|d2)−ATT (d1|d1)

d2 − d1
− βtwfe

=

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
︸ ︷︷ ︸ dl

−
{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.
If Assumption 5 holds instead of Assumption 4, then the same sort of result holds with ATE(d2)−

ATE(d1) replacing ATT (d2|d2)−ATT (d1|d1) on the LHS of the previous equation and with m′
∆(l) =

ACR(l) on the RHS of the previous equation.
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Proof. To start with, consider the path of outcomes under dose d2 relative to the path of outcomes
under dose d1 scaled by (d2 − d1), and notice that

m∆(d2)−m∆(d1)

d2 − d1
=

∫ d2

d1

1

d2 − d1
m′

∆(l) dl =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l) dl (S24)

where the first equality holds by the law of iterated expectations, and the second equality by the
definition of wdiff . In addition, notice that the “weights” here integrate to one:∫ d2

d1

wdiff (d1, d2) dl =
1

d2 − d1

∫ d2

d1

dl = 1

Now, move to considering βtwfe. From Equation (B.6) in the proof of Theorem 3.4 in the main text,
we have that

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0) + E

[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))

∣∣∣D > 0

]
P(D > 0)

Focusing on the first term in the above expression, and, again, from the proof of Theorem 3.4, we
have that

E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

=

∫ dU

dL

m′
∆(l)w

acr
1 (l) dl

=

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ d2

d1

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl

}
(S25)

where the second equality just splits the integral into three parts and, as in the main text, wacr
1 (l) =

(E[D|D≥l]−E[D])P(D≥l)
Var(D) . Taking the difference between the expressions in Equations S24 and S25, we

have that
m∆(d2)−m∆(d1)

d2 − d1
− βtwfe =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
︸ ︷︷ ︸ dl

−

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
(S26)

where, as in the main text, wacr
0 = (E[D|D>0]−E[D])P(D>0)dL

Var(D) .
As in Theorem 3.2, under Assumption 4, m∆(d2) − m∆(d1) = ATT (d2|d2) − ATT (d1|d1) =

E[Yt=2(d2)−Yt=2(d1)|D = d2]+
(
ATT (d1|d2)−ATT (d2|d2)

)
and m′

∆(l) = ACRT (l|l)+ ∂ATT (l|h)
∂h

∣∣∣
h=l

(notice that both of these expressions also include selection bias). Under Assumption 5, m∆(d2) −
m∆(d1) = ATE(d2)−ATE(d1) and m′

∆(l) = ACR(l). This completes the proof.

This shows that, in general, βtwfe will be different from ATT (d2|d2)−ATT (d1|d1)
d2−d1

(under parallel
trends) or ATE(d2)−ATE(d1)

d2−d1
(under strong parallel trends) due to (i) different weights on underlying

derivative terms (i.e., m′
∆(l)) for values of l between d1 and d2 (this is the underlined term in

the expression in the proposition), and (ii) because βtwfe additionally depends on effects of the
treatment for values outside of [d1, d2] (this is the second term in curly brackets in the expression in
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the proposition).

SC.3 TWFE Decomposition with a Multi-Valued Discrete Treatment

The following theorem provides the discrete analog of Theorem 3.4 from the main text. The weights
in the decomposition are the same ones as those used in the main text which are reported in Table 1
in the main text with the exception that fD(l) should be understood as pl in the discrete case. In
this section, we continue to use the notation m∆(d) = E[∆Y |D = d].

Theorem S4. Under Assumptions 1, 2(b), 3, and 4, βtwfe can be decomposed in the following ways:

(a) Causal Response Decomposition:

βtwfe =
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

{
ACRT (dj |dj)
dj − dj−1

+

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
dj − dj−1︸ ︷︷ ︸

selection bias

}

where the weights, wacr
1 (dj)(dj − dj−1) are always positive and sum to 1.

(b) Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

wlev
1 (dj)ATT (dj |dj)

where wlev
1 (dj) ≶ 0 for dj ≶ E[D], and

∑
dj∈Dmv

+

wlev
1 (dj) + wlev

0 = 0.

(c) Scaled Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

ws(dj)
ATT (dj |dj)

dj
,

where ws(dj) ≶ 0 for dj ≶ E[D], and
∑

dj∈Dmv
+

ws(dj) = 1.

(d) Scaled 2× 2 Decomposition

βtwfe =
∑
l∈D

∑
h∈D,h>l

w2×2
1 (l, h)


E[Yt=2(h)− Yt=2(l)|D = h]

h− l︸ ︷︷ ︸
causal response

+

(
ATT (l|h)−ATT (l|l)

)
h− l︸ ︷︷ ︸

selection bias


where the weights are always positive and sum to 1.

If one imposes Assumption 5 instead of Assumption 4, then the selection bias terms from part (a)
and part (d) become zero, and the remainder of the decompositions remain true, except one needs to
replace ACRT (dj |dj) with ACR(dj) in part (a), ATT (dj |dj) with ATE(dj) in parts (b) and (c), and
E[Yt=2(h)− Yt=2(l)|D = h] with E[Yt=2(h)− Yt=2(l)] in part (d).
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Proof of Theorem S4

We follow the same proof strategy as for the continuous case in the main text and mainly emphasize
the parts of the proof that are different from those in the continuous case. As in the continuous case,
our strategy is to provide a mechanical decomposition in terms of m∆(d) = E[∆Y |D = d]. Then,
given those results, the main results in the theorem hold because, under Assumption 4

• m∆(dj)−m∆(0) = ATT (dj |dj)

• m∆(dj)−m∆(dj−1) = ACRT (dj |dj) +
(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
︸ ︷︷ ︸

selection bias

• For (h, l) ∈ Dmv
+ × Dmv

+ , m∆(h) − m∆(l) = ATT (h|h) − ATT (l|l) = E[Yt=2(h) − Yt=2(l)|D =

h] +
(
ATT (l|h)−ATT (l|l)

)
︸ ︷︷ ︸

selection bias

or, when Assumption 5 holds,

• m∆(dj)−m∆(0) = ATE(dj)

• m∆(dj)−m∆(dj−1) = ACR(dj)

• For (h, l) ∈ Dmv
+ ×Dmv

+ , m∆(h)−m∆(l) = ATE(h)−ATE(l) = E[Yt=2(h)− Yt=2(l)]

Proof of Theorem S4(a)

Proof. Notice that,

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
=

1

Var(D)

∑
d∈D

(d− E[D])(m∆(d)−m∆(0))pd

=
1

Var(D)

∑
d∈D

(d− E[D])pd
∑

dj∈Dmv
+

1{dj ≤ d}(m∆(dj)−m∆(dj−1))

=
1

Var(D)

∑
dj∈Dmv

+

(m∆(dj)−m∆(dj−1))
∑
d∈D

(d− E[D])1{d ≥ dj}pd

=
∑

dj∈Dmv
+

(m∆(dj)−m∆(dj−1))
(E[D|D ≥ dj ]− E[D])P(D ≥ dj)

Var(D)

=
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

(m∆(dj)−m∆(dj−1))

(dj − dj−1)

where the second equality holds by writing the expectation as a summation, the third equality holds
by adding and subtracting m∆(dj) for all dj ’s between 0 and d, the fourth equality holds by changing
the order of the summations, the fifth equality writes the second summation as an expectation, and
the last equality holds by the definition of the weights and by multiplying and dividing by (dj−dj−1).
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That wacr
1 (dj)(dj − dj−1) > 0 holds immediately since wacr

1 (dj) ≥ 0 for all dj ∈ Dmv
+ and dj > dj−1.

Further, ∑
dj∈Dmv

+

wacr
1 (dj)(dj − dj−1)

=

 ∑
dj∈Dmv

+

E[1{D ≥ dj}D](dj − dj−1)− E[D]
∑

dj∈Dmv
+

P(D ≥ dj)(dj − dj−1)

/Var(D)

= (A−B)/Var(D)

We consider each of these terms in turn:

A =
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}dkpdk(dj − dj−1)

=
∑
dk∈D

pdkdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

=
∑
dk∈D

pdkdk(dk − 0)

= E[D2]

where the first equality holds by writing the expectation for Term A as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D2].

Next,

B = E[D]
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}pdk(dj − dj−1)

= E[D]
∑
dk∈D

pdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

= E[D]
∑
dk∈D

dkpdk

= E[D]2

where the first equality holds by writing the expectation for Term B as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D].

This implies that A−B = Var(D), which implies that the weights sum to 1.

Proof of Theorem S4(b)

Proof. The proof is analogous to the continuous case in Theorem 3.4(b) in the main text except for
replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition
of wlev.
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Proof of Theorem S4(c)

Proof. The proof is analogous to the continuous case in Theorem 3.4(c) in the main text except for
replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition
of ws.

Proof of Theorem S4(d)

Proof. Up to Equation (B.14) in the main text, the steps of the proof of Theorem 3.4(d) for the
continuous case carry over to the discrete case. Under Assumption 2(b),

Equation (B.14) = 1

Var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
phpl

which holds immediately from Equation (B.14) and then the result holds by the definition of w2×2
1 .

That the weights are positive and sum to 1 holds by the same type of argument as used in the
continuous case.

SD Additional Details about Comparing Parallel Trends Assump-
tions

SD.1 Parallel Trends and Strong Parallel Trends Are Non-Nested

This section considers in more detail the differences between Assumption 4 and Assumption 5. In
this section, we show that Assumption 5 is not strictly stronger than Assumption 4 though it is
likely to be stronger in practice in most applications. Here, we maintain Assumption 3, so Yt=1(d) =

Yt=1(d
′) = Yt=1(0) for any (d, d′) ∈ D ×D.

To see that Assumption 5 is not strictly stronger, consider the case where there are two doses d1

and d2. In this case, Assumption 4 is equivalent to the following conditions

E[Yt=2(0)− Yt−1(0)|D = d1] = E[Yt=2(0)− Yt−1(0)|D = d2] = E[Yt=2(0)− Yt−1(0)|D = 0] (S27)

while Assumption 5 is equivalent to

E[Yt=2(0)− Yt−1(0)] = E[Yt=2(0)− Yt−1(0)|D = 0] (S28)

E[Yt=2(d1)− Yt=1(0)] = E[Yt=2(d1)− Yt=1(0)|D = d1] (S29)

E[Yt=2(d2)− Yt=1(0)] = E[Yt=2(d2)− Yt=1(0)|D = d2]. (S30)

Assumption 4 does not place any restrictions on any potential outcomes besides untreated potential
outcomes, and therefore the “extra” conditions in Equations (S29) and (S30) imply that Assumption 5
is not weaker than Assumption 4.

On the other hand, Equation (S28) does not imply Equation (S27); rather, it implies that

E[Yt=2(0)− Yt−1(0)|D = 0] = E[Yt=2(0)− Yt−1(0)|D = d1]
pd1

pd1 + pd2

+ E[Yt=2(0)− Yt−1(0)|D = d2]
pd2

pd1 + pd2
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In other words, the trend in untreated potential outcomes does not have to be exactly the same for
all doses, but, instead, they have to be the same on average.

In practice, this potentially allows for some units to select their amount of dose on the basis of the
path of their untreated potential outcomes (which is not allowed under the standard parallel trends
assumption in Assumption 4), but that the amount of selection has to average out across doses to
be equal to zero. It seems hard to think of realistic cases where Assumption 5 would be practically
weaker than Assumption 4, though.

SD.2 Proofs of Results from Appendix C

This section provides the proof of Theorem C.1 in the main text which compared different versions
of parallel trends assumptions along with their relationship to restrictions on treatment effect het-
erogeneity.

Proof of Theorem C.1(a)

Proof. Notice that

ATT o = E
[
ATT (D|D)

∣∣∣D > 0
]

= E
[
E[Yt=2(D)− Yt=2(0)|D]

∣∣∣D > 0
]

= E
[
E[1{D > 0}(Yt=2(D)− Yt=2(0))|D]

∣∣∣D > 0
]

= E
[
E[1{D > 0}(Yt=2(D)− Yt=2(0))|D,D > 0]

P(D > 0|D)

∣∣∣D > 0

]
= E

[
E[Yt=2(D)− Yt=2(0)|D,D > 0]

∣∣∣D > 0
]

= E
[
Yt=2(D)− Yt=2(0)

∣∣∣D > 0
]

= E
[
Yt=2(D)− Yt=1(0)

∣∣∣D > 0
]
− E

[
Yt=2(0)− Yt=1(0)

∣∣∣D > 0
]

= E
[
Yt=2(D)− Yt=1(0)

∣∣∣D > 0
]
− E

[
Yt=2(0)− Yt=1(0)

∣∣∣D = 0
]

= E[∆Y |D > 0]− E[∆Y |D = 0]

where the first equality holds by the definition of ATT o, the second equality holds by the definition of
ATT (d|d), the third equality holds because 1{D > 0} = 1 conditional on D > 0, the fourth equality
holds by the law of iterated expectations, the fifth equality holds because, conditional on D > 0,
1{D > 0} = 1 and P(D > 0|D) = 1, the sixth equality holds by the law of iterated expectations,
the seventh equality holds by adding and subtracting E[Yt=1(0)|D > 0], the eighth equality holds
by aggregate parallel trends, and the last equality holds by replacing potential outcomes with their
corresponding observed outcomes.

Proof of Theorem C.1(b)

Proof. This is a restatement of Theorem 3.1 and holds from that result.
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Proof of Theorem C.1(c)

Proof. This is a restatement of Theorem 3.3 and holds from that result.

Proof of Theorem C.1(d)

Proof. Start with the definition of ATE(d)

ATE(d) = E[Yt=2(d)− Yt=2(0)]

= E[Yt=2(d)− Yt=1(0)]− E[Yt=2(0)− Yt=1(0)]

= E[Yt=2(d)− Yt=1(0)|D = d]− E[Yt=2(0)− Yt=1(0)|D = d]

= E[Yt=2(d)− Yt=2(0)|D = d]

= ATT (d|d)

where the third equality uses strong parallel trends on the first term and parallel trends on the second
term (by itself, strong parallel trends would imply that the second term is equal to E[Yt=2(0) −
Yt=1(0)|D = 0] only). That ATT (d|d) = E[∆Y |D = d]− E[∆Y |D = 0] holds by Theorem 3.1 in the
main text. This completes the proof.

Proof of Theorem C.1(e)

Proof. We start by showing that ATE(d) = ATT (d|d′) for any d′. Starting with the definition of
ATE(d),

ATE(d) = E[Yt=2(d)− Yt=2(0)]

= E[Yt=2(d)− Yt=1(0)]− E[Yt=2(0)− Yt=1(0)]

= E[Yt=2(d)− Yt=1(0)|D = d′]− E[Yt=2(0)− Yt=1(0)|D = d′]

= E[Yt=2(d)− Yt=2(0)|D = d′]

= ATT (d|d′)

where the second equality holds by adding and subtracting E[Yt=1(0)], the third equality holds by
Assumption 5-Alt (also, notice that this equality does not hold under Assumption 4 or Assumption 5),
the fourth equality holds by canceling the two E[Yt=1(0)|D = d′] terms, and the remaining term in
that equality is ATT (d|d′).

The previous argument holds for any d′, including d′ = d; therefore, ATE(d) = ATT (d|d′) =

ATT (d|d). Finally, notice that Assumption 5-Alt implies Assumption 4 by taking d = 0 in the
statement of the assumption; thus, ATT (d|d) = E[∆Y |D = d]−E[∆Y |D = 0] by Theorem 3.1. This
completes the proof.
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Proof of Theorem C.1(f)

Proof. Consider the case with two doses, d1 and d2. We will start by showing that ATT (d1|d1) is not
identified under aggregate parallel trends alone. Notice that

ATT (d1|d1) = E[Yt=2(d1)− Yt=2(0)|D = d1]

= E[Yt=2(d1)− Yt=1(0)|D = d1]− E[Yt=2(0)− Yt=1(0)|D = d1]

= E[∆Y |D = d1]− E[Yt=2(0)− Yt=1(0)|D = d1]

so that identifying ATT (d1|d1) comes down to identifying E[Yt=2(0)−Yt=1(0)|D = d1]. In the setting
with dose groups 0, d1, and d2, the only restriction from aggregate parallel trends is that

E[Yt=2(0)− Yt=1(0)|D = 0] = E[Yt=2(0)− Yt=1(0)|D > 0]

which is equivalent to

E[Yt=2(0)− Yt=1(0)|D = 0] = E[Yt=2(0)− Yt=1(0)|D = d1]
pd1

pd1 + pd2

+ E[Yt=2(0)− Yt=1(0)|D = d2]
pd2

pd1 + pd2

In this equation, E[Yt=2(0)−Yt=1(0)|D = 0] and the terms involving probabilities are identified by the
sampling process, but E[Yt=2(0)−Yt−1(0)|D = d1] and E[Yt=2(0)−Yt−1(0)|D = d2] are not identified
by the sampling process, and any combination of these two conditional expectations that satisfies the
previous equation also satisfies the aggregate parallel trends assumption. This implies that aggregate
parallel trends does not lead to point identification of ATT (d1|d1) and completes the proof.

Next, we show that aggregate parallel trends does not identify ATE(d1). Notice that

ATE(d1) = E[Yt=2(d1)− Yt=2(0)]

= E[Yt=2(d1)− Yt=1(0)]− E[Yt=2(0)− Yt=1(0)]

where the second equality holds by adding and subtracting E[Yt=1(0)]. The first term gives the
average path of potential outcomes under dose d1 while the second term involves the path of untreated
potential outcomes. Focusing on the first term, we have that

E[Yt=2(d1)− Yt=1(0)] = E[Yt=2(d1)− Yt=1(0)|D = 0]p0

+ E[Yt=2(d1)− Yt=1(0)|D = d1]pd1

+ E[Yt=2(d1)− Yt=1(0)|D = d2]pd2

In this expression, E[Yt=2(d1)− Yt=1(0)|D = d1] and the probabilities are identified by the sampling
process. The other terms are not identified by the sampling process, nor does aggregate parallel
trends restrict the path of potential outcomes under dose d1. Therefore, ATE(d1) is not identified
under aggregate parallel trends.
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Proof of Theorem C.1(g)

Proof. To show the result, consider the case with two doses d1 and d2. We will show that ATE(d1)

is not identified under parallel trends. The argument is very similar to the proof of the second part
of part (f). In particular,

ATE(d) = E[Yt=2(d1)− Yt=1(0)]− E[Yt=2(0)− Yt=1(0)]

And, if we focus on the first term, we have that

E[Yt=2(d1)− Yt=1(0)] = E[Yt=2(d1)− Yt=1(0)|D = 0]p0

+ E[Yt=2(d1)− Yt=1(0)|D = d1]pd1

+ E[Yt=2(d1)− Yt=1(0)|D = d2]pd2

where E[Yt=2(d1)− Yt=1(0)|D = d1] and the probabilities are identified by the sampling process, but
the conditional expectations E[Yt=2(d1) − Yt=1(0)|D = 0] and E[Yt=2(d1) − Yt=1(0)|D = d2] are not
identified by the sampling process. Since parallel trends does not restrict the path of outcomes under
dose d1, it implies that ATE(d1) is not identified under parallel trends.

Proof of Theorem C.1(h)

Proof. Consider the case with two doses, d1 and d2. We will show that ATT (d1|d1) is not point-
identified under strong parallel trends alone. As in the proof of part (f), identifying ATT (d1|d1)
comes down to identifying E[Yt=2(0)− Yt=1(0)|D = d1] The only restriction on the path of untreated
potential outcomes from strong parallel trends is that

E[Yt=2(0)− Yt=1(0)] = E[Yt=2(0)− Yt=1(0)|D = 0]

In the current setting where the dose groups are 0, d1, d2, this is equivalent to

E[Yt=2(0)− Yt=1(0)|D = 0] = E[Yt=2(0)− Yt=1(0)|D = d1]
pd1

pd1 + pd2

+ E[Yt=2(0)− Yt=1(0)|D = d2]
pd2

pd1 + pd2

which holds by applying the law of iterated expectations to the LHS of the previous equation and then
re-arranging. In the previous expression, the probabilities are identified from the sampling process,
but E[Yt=2(0)−Yt=1(0)|D = d1] and E[Yt=2(0)−Yt=1(0)|D = d2] are not. And any values of these two
terms that satisfies the previous equation additionally satisfies strong parallel trends. This implies
that ATT (d1|d1) is not identified under strong parallel trends alone.

Proof of Theorem C.1(i)

Proof. Consider the same case as in Part (f) with two doses, d1 and d2. Since parallel trends holds for
this part, it implies that ATT (d1|d1) and ATT (d2|d2) are identified. We will show that ATT (d1|d2)
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is not identified under the combination of parallel trends and strong parallel trends. Notice that

ATT (d1|d2) = E[Yt=2(d1)− Yt=2(0)|D = d2]

= E[Yt=2(d1)− Yt=1(0)|D = d2]− E[Yt=2(0)− Yt=1(0)|D = d2]

= E[Yt=2(d1)− Yt=1(0)|D = d2]− E[∆Y |D = 0]

where the first line is the definition of ATT (d1|d2), the second line adds and subtracts E[Yt=1(0)|D =

d2], and third line holds by parallel trends. The equation above implies that identifying ATT (d1|d2)
comes down to identifying E[Yt=2(d1)−Yt=1(0)|D = d2]. Parallel trends places no restrictions on this
term. The only restriction from strong parallel trends on the path of outcomes under does d1 is that

E[Yt=2(d1)− Yt=1(0)] = E[Yt=2(d1)− Yt=1(0)|D = d1]

In the current setting where the dose groups are 0, d1, d2, this is equivalent to

E[Yt=2(d1)− Yt=1(0)|D = d1] = E[Yt=2(d1)− Yt=1(0)|D = 0]
p0

p0 + pd2

+ E[Yt=2(d1)− Yt=1(0)|D = d2]
pd2

p0 + pd2

which holds by applying the law of iterated expectations to the LHS of the previous equation and
then re-arranging. In the previous expression, the probabilities are identified from the sampling
process, but E[Yt=2(d1)− Yt=1(0)|D = 0] and E[Yt=2(d1)− Yt=1(0)|D = d2] are not. And any values
of these two terms that satisfies the previous equation additionally satisfies strong parallel trends.
This implies that ATT (d1|d2) is not identified under the combination of parallel trends and strong
parallel trends.

Proof of Theorem C.1(j)

Proof. Given the result in part (b), if aggregate parallel trends implied parallel trends, then this would
imply that ATT (d|d) could be recovered under aggregate parallel trends, but this contradicts part
(f) above. Similarly, given the result in part (c), if aggregate parallel trends implied strong parallel
trends, then this would imply that ATE(d) could be recovered under aggregate parallel trends, but
this also contradicts part (f) above.

Proof of Theorem C.1(k)

Proof. We start by showing that parallel trends implies aggregate parallel trends. Notice that

E[Yt=2(0)− Yt=1(0)|D > 0] = E
[
E[Yt=2(0)− Yt=1(0)|D,D > 0]

∣∣∣D > 0
]

= E
[
E[Yt=2(0)− Yt=1(0)|D]

∣∣∣D > 0
]

= E
[
E[Yt=2(0)− Yt=1(0)|D = 0]

∣∣∣D > 0
]

= E[Yt=2(0)− Yt=1(0)|D = 0]

where the first equality holds by the law of iterated expectations, the second equality holds using an
argument similar to the one provided in part (a), the third equality holds by parallel trends, and the
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last equality holds because E[Yt=2(0)− Yt=1(0)|D = 0] is non-random.
Next, we show that strong parallel trends implies aggregate parallel trends. Notice that

E[Yt=2(0)− Yt=1(0)|D > 0] =
E[Yt=2(0)− Yt=2(0)]− E[Yt=2(0)− Yt=1(0)|D = 0]p0

P(D > 0)

=
E[Yt=2(0)− Yt=2(0)|D = 0]− E[Yt=2(0)− Yt=1(0)|D = 0]p0

1− p0

= E[Yt=2(0)− Yt=2(0)|D = 0]

where the first equality holds by the law of iterated expectations (and re-arranging terms), the second
equality holds by strong parallel trends and because P(D > 0) = 1− P(D = 0), and the last equality
holds by combining terms and canceling terms.

Proof of Theorem C.1(l)

Proof. Given the results in parts (b), if strong parallel trends implied parallel trends, then this
would imply that would imply that ATT (d|d) could be recovered under strong parallel trends, which
contradicts part (h) above. Similarly, given the result in part (c), if parallel trends implied strong
parallel trends, then this would imply that ATE(d) could be recovered under parallel trends, which
contradicts part (g) above. Therefore, these are non-tested assumptions. See also the discussion
above in Appendix SD.1 for an example.

Proof of Theorem C.1(m)

Proof. That alternative strong parallel trends implies parallel trends holds immediately from the
definition of alternative strong parallel trends by taking d = 0.

To show that it also implies strong parallel trends, starting with the LHS of strong parallel trends
assumption (Assumption 5), notice that for any d

E[Yt=2(d)− Yt=1(0)] =

∫
D
E[Yt=2(d)− Yt=1(0)|D = l] dFD(l)

= E[Yt=2(d)− Yt=1(0)|D = d]

∫
D

dFD(l)

= E[Yt=2(d)− Yt=1(0)|D = d]

where the first equality holds by the law of iterated expectations, the second equality uses alternative
strong parallel trends, and the last line holds immediately. This shows that alternative strong parallel
trends implies strong parallel trends.

Proof of Theorem C.1(n)

Proof. Start with the LHS of the strong parallel trends assumption

E[Yt=2(d)− Yt=1(0)] = E[Yt=2(d)− Yt=2(0)] + E[Yt=2(0)− Yt=1(0)]

= ATE(d) + E[Yt=2(0)− Yt=1(0)|D = d]

= ATT (d|d) + E[Yt=2(0)− Yt=1(0)|D = d]
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= E[Yt=2(d)− Yt=2(0)|D = d] + E[Yt=2(0)− Yt=1(0)|D = d]

= E[Yt=2(d)− Yt=1(0)|D = d]

where the second equality uses the definition of ATE(d) and the parallel trends assumption, and the
third equality uses that ATE(d) = ATT (d|d).

Proof of Theorem C.1(o)

Proof. Start with the LHS of alternative strong parallel trends

E[Yt=2(d)− Yt=1(0)|D = l] = E[Yt=2(d)− Yt=2(0)|D = l] + E[Yt=2(0)− Yt=1(0)|D = l]

= ATT (d|l) + E[Yt=2(0)− Yt=1(0)|D = d]

= ATT (d|d) + E[Yt=2(0)− Yt=1(0)|D = d]

= E[Yt=2(d)− Yt=2(0)|D = d] + E[Yt=2(0)− Yt=1(0)|D = d]

= E[Yt=2(d)− Yt=1(0)|D = d]

where the second equality uses parallel trends and the third equality uses ATT (d|d′) = ATT (d|d).
This shows the result.

SE Relaxing Strong Parallel Trends

In this section, we provide more details about the three possible ideas to weaken the strong parallel
trends assumption that were discussed in Section 5 in the main text.

SE.1 Partial Identification

To start with, we consider the case where a researcher only wishes to invoke parallel trends (As-
sumption 4) but is willing to assume that the sign of the selection bias is known. Without loss of
generality, we focus on the case where there is positive selection bias in the sense that, for dose d

and any two dose groups l and h with l < h, we have that ATT (d|l) ≤ ATT (d|h)—this is positive
selection bias in that the ATT of any dose is higher for the high dose group, h, relative to the low
dose group, l. The following result shows that, under this sort of condition, we can construct bounds
on differences between causal effect parameters at different values of the dose.

Proposition S7. Under Assumptions 1 to 4 and suppose without loss of generality that for any
d ∈ D+ and l < h, ATT (d|l) < ATT (d|h), then the following results hold

(1) E[Yt=2(h)− Yt=2(l)|D = h] ≤ E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

(2) ACRT (d|d) ≤ ∂E[∆Y |D=d]
∂d

Proof. For part (1), from Theorem 3.2(b) in the main text, we have that, under Assumption 4,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)
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= E[Yt=2(h)− Yt=2(l)|D = h] +
(
ATT (l|h)−ATT (l|l)

)
︸ ︷︷ ︸

≥0

≥ E[Yt=2(h)− Yt=2(l)|D = h]

where the last inequality holds due to the positive selection bias.
For part (2), from Theorem 3.2(b) in the main text, we have that

∂E[∆Y |D = d]

∂d
= ACRT (d|d) + ∂ATT (d|l)

∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

≥0

≥ ACRT (d|d)

where the last inequality holds due to the positive selection bias.

Part (1) of Proposition S7 says that, given positive selection bias, the average causal response of
the high dose, h, relative to the low dose, l, for the high dose group is bounded by comparing the
average path of outcomes over time for the high dose group relative to the low dose group. Part (2)
says that, under positive selection bias, the ACRT (d|d) is bounded by the derivative of E[∆Y |D = d]

with respect to d.

SE.2 Local Strong Parallel Trends

In this section, we consider a local strong parallel trends assumption where, as discussed in the main
text, strong parallel trends holds in some sub-region Ds ⊆ D+. As discussed in the main text, we
focus on identifying a local version of ATE(d) given by E[Yt=2(d) − Yt=2(0)|D ∈ Ds]. This is the
average treatment effect of dose d across all dose groups that experienced a treatment in Ds. We
consider the following assumption

Assumption S2. For all d ∈ Ds ⊆ D+,

E[Yt=2(d)− Yt=1(0)|D ∈ Ds] = E[Yt=2(d)− Yt=1(0)|D = d]

This is an analogous assumption to Assumption 5 from the main text with the exception that it
holds locally to the sub-region Ds rather than for all D. Next, we show that E[Yt=2(d)−Yt=2(0)|D ∈
Ds] is identified under this assumption.11

Proposition S8. Under Assumptions 1 to 4 and S2, and for d ∈ Ds

E[Yt=2(d)− Yt=2(0)|D ∈ Ds] = E[∆Y |D = d]− E[∆Y |D = 0]

11In the proposition, we use both Assumption S2 and Assumption 4 from the main text. The latter assumption
is used to deal with the path of untreated potential outcomes that shows up in the proof of the proposition. This is
slightly different from how we used Assumption 5 to identify ATE(d) in the main text. It is possible to slightly adjust
Assumption S2 to include untreated potential outcomes and then have the proof use the analogous steps to the ones
for Theorem 3.3 in the main text. Instead, in our view, the combination of Assumption S2 and Assumption 4 could be
somewhat more attractive in empirical applications.
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Proof. For any d ∈ Ds, we have that

E[Yt=2(d)− Yt=2(0)|D ∈ Ds] = E[Yt=2(d)− Yt=1(0)|D ∈ Ds]− E[Yt=2(0)− Yt=1(0)|D ∈ Ds]

= E[Yt=2(d)− Yt=1(0)|D = d]− E[Yt=2(0)− Yt=1(0)|D = 0]

= E[∆Y |D = d]− E[∆Y |D = 0]

where the first equality holds by adding and subtracting E[Yt=1(0)|D ∈ Ds], the second equality uses
Assumption S2 for the first term and Assumption 4 for the second term, and the last equality holds
by replacing potential outcomes with their observed counterparts.

An immediate corollary to the previous result is that a local version of the ACR is also identified:
∂E[Yt=2(d)− Yt=2(0)|D ∈ Ds]

∂d
=

∂E[∆Y |D = d]

∂d
for d in the interior of Ds—notice that there are no

selection bias terms in this expression which is due to this being a version of strong parallel trends.12

SE.3 Strong Parallel Trends Conditional-on-Covariates

In this section, we consider a conditional-on-covariates version of strong parallel trends that can be
used to recover conditional ATE parameters. We target ATEx(d) := E[Yt=2(d) − Yt=2(0)|X = x].
We consider the following assumption

Assumption S3. For all d ∈ D,

E[Yt=2(d)− Yt=1(0)|X = x] = E[Yt=2(d)− Yt=1(0)|X = x,D = d]

This is a conditional-on-covariates version of strong parallel trends. The following result shows
that ATEx(d) is identified under this condition.

Proposition S9. Under Assumptions 1 to 4 and S3,13

ATEx(d) = E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0]

Proof. For any d ∈ D, we have that

ATEx(d) = E[Yt=2(d)− Yt=2(0)|X = x]

= E[Yt=2(d)− Yt=1(0)|X = x]− E[Yt=2(0)− Yt=1(0)|X = x]

= E[Yt=2(d)− Yt=1(0)|X = x,D = d]− E[Yt=2(0)− Yt=1(0)|X = x,D = 0]

= E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0],

where the first equality holds by the definition of ATEx(d), the second equality holds by adding and
subtracting E[Yt=1(0)|X = x], the third equality holds by Assumption S3, and the last equality by
replacing potential outcomes with their observed counterparts.

12As an interesting side-comment, unlike the level-effect parameter in Proposition S8, notice that the causal response-
type parameter here does not require parallel trends for untreated potential outcomes (i.e., it does not require Assump-
tion 4); this argument is the same as in Appendix SC.1 for the case with no untreated units.

13Assumptions 1 and 2 need to be slightly modified so that Xi is included in the random sample and clarity regarding
the support of D conditional on X = x. We omit writing these as formal conditions for the sake of brevity.
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An immediate corollary to the previous result is that the conditional on covariates version of
ACR is also identified. In particular, ACRx(d) :=

∂ATEx(d)
∂d = ∂E[∆Y |X=x,D=d]

∂d . Notice that there is
no selection bias term in this expression.
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