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A researcher can analyze a two-group/two-
period binary difference-in-differences (DiD)
design without having to make many choices.
Assuming that treatment does not affect out-
comes prior to its initiation, the average treat-
ment effect on the treated is identified under a
parallel trends assumption by the difference be-
tween average outcome changes across groups:
one parameter, one parallel trends assumption,
and one estimator.

A more complicated DiD design, however, re-
quires researchers to make more decisions. This
paper builds on Callaway, Goodman-Bacon and
Sant’Anna (2024) and considers choices facing a
researcher using DiD methods to study a treat-
ment that begins at different times (staggered)
and affects units to different degrees (treatment
intensity). We discuss transparent ways to ag-
gregate the large set of causal parameters that
arise in this setting that convey heterogeneity
by event-time and across doses, and we show
how these choices can simplify estimation and
inference. In contrast to parameters from com-
mon two-way fixed effects linear specifications,
our summary parameters do not suffer from
negative/non-transparent weighting issues.

I. Some causal parameters of interest

Consider a panel dataset with 𝑁 units in-
dexed by 𝑖, and 𝑇 time periods indexed by
𝑡. Denote the time unit 𝑖 is first treated by
𝐺𝑖 ∈ G = {2, · · · , 𝑇,∞}, where 𝐺𝑖 = ∞ means
that a unit is not treated by 𝑇 (“never treated”).
As we focus on staggered setups, 𝐺𝑖 can be in-
terpreted as the “treatment timing group”. Let
𝐷𝑖 ∈ D ⊆ [0, 𝑑𝐻], 𝑑𝐻 < ∞, denote the treat-
ment “dose” (or intensity) unit 𝑖 received when
it was first treated. We interpret 𝐷𝑖 as the “dose
group”.
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We adopt the potential outcome framework
and write 𝑌𝑖,𝑡 (𝑔, 𝑑) as the potential outcome of
unit 𝑖 at time 𝑡 if such a unit is first treated in pe-
riod 𝑔, with dose 𝑑; we write𝑌𝑖,𝑡 (0) = 𝑌𝑖,𝑡 (∞, 0)
for units that remain untreated by the last time
period of available data. This notation defines
group-time-dose-specific average treatment ef-
fects:

𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑) = 𝐸 [𝑌𝑡 (𝑔, 𝑑) − 𝑌𝑡 (0) |𝐺 = 𝑔, 𝐷 = 𝑑] .

𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑) is the average treatment effect in
period 𝑡 of (i) becoming treated in period 𝑔 and
(ii) experiencing dose 𝑑 versus zero dose, among
those in timing group 𝑔 that received treatment
dose 𝑑. 𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑) parameters describe what
some treatment actually achieved. They embody
many types of heterogeneity that researchers of-
ten want to report and interpret. For a given 𝑔

and 𝑡, average effects at different doses describe
group 𝑔’s “dose-response” function. For a given
𝑑 and 𝑔, differences in average causal effects
across 𝑡 represent treatment effect dynamics. Fi-
nally, for a given 𝑑 and 𝑡, different average effects
by 𝑔 capture a combination of dynamics and dif-
ferences in the effect of being treated at a given
time.

With continuous treatments, another class of
causal parameters that may be of interest are av-
erage causal response parameters, defined as

𝐴𝐶𝑅(𝑔, 𝑡, 𝑑) = 𝜕𝐸 [𝑌𝑡 (𝑔, 𝑑) |𝐺 = 𝑔]
𝜕𝑑

����
𝑑=𝑑

.

𝐴𝐶𝑅(𝑔, 𝑡, 𝑑) is the average causal response to a
marginal change in the dose at 𝑑 for all units in
timing group 𝑔. 𝐴𝐶𝑅 parameters answer causal
questions about what level of treatment matters
more or less. This slope parameter is also a
function of 𝑔, 𝑡, and 𝑑, and can vary in these
dimensions in meaningful ways.

In staggered DiD setups with continuous treat-
ments, it may not be practical to estimate one
dose-response type of function for each 𝑡 and
𝑔. Thus, researchers may want to aggregate
these “building blocks” by time-since-treatment
(event-time; 𝑒 = 𝑡−𝑔) and/or across doses. Here,
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we focus on summarizing 𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑)𝑠 across
both margins, and then discuss how these aggre-
gation choices shape estimation. See Callaway,
Goodman-Bacon and Sant’Anna (2024) for ag-
gregations of 𝐴𝐶𝑅(𝑔, 𝑡, 𝑑)s.

II. Event-study-type parameters

We start discussing event-study aggregations
that average over treatment dosages. For a
given group 𝑔 and time 𝑡, let 𝐴𝑇𝑇𝑜 (𝑔, 𝑡) =

𝐸 [𝐴𝑇𝑇 (𝑔, 𝑡, 𝐷) |𝐺 = 𝑔, 𝐷 > 0] be the average
𝐴𝑇𝑇 for that group in a given point in time, and
let

𝐴𝑇𝑇𝑒𝑠 (𝑒) = 𝐸 [𝐴𝑇𝑇𝑜 (𝐺,𝐺 + 𝑒) |𝐺 + 𝑒 ∈ [2, 𝑇], 𝐷 > 0]

denote the average treatment effect among those
that have been exposed to any treatment for ex-
actly 𝑒 periods, conditional on being observed
having participated in the treatment for that num-
ber of periods (𝐺 + 𝑒 ∈ [2, 𝑇]), and being ever-
treated (𝐷 > 0). When 𝐷 is binary, 𝐴𝑇𝑇𝑒𝑠 (𝑒)
reduces to the event-study coefficient considered
by Callaway and Sant’Anna (2021).

The above parameters fully aggregate across
doses and thus do not describe treatment ef-
fect dynamics for “higher-dose” or “lower-dose”
groups, for instance. To tackle these questions,
we can “partially” aggregate the doses in each
group and time period to form the “dose-aware”
event-study parameters

𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒)
= 𝐸 [𝐴𝑇𝑇𝑜

𝑑1 ,𝑑2
(𝐺,𝐺 + 𝑒) |𝑑1 ≤ 𝐷 ≤ 𝑑2, 𝐺 + 𝑒 ∈ [2, 𝑇]],

where 𝐴𝑇𝑇𝑜
𝑑1 ,𝑑2

(𝑔, 𝑔+𝑒) = 𝐸 [𝐴𝑇𝑇 (𝑔, 𝑡, 𝐷) |𝐺 =

𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2], and 0 < 𝑑1 ≤ 𝑑2 are thresholds
within the support of 𝐷. By picking different
intervals, one can assess how average treatment
effect dynamics vary across dosage groups. For
instance, one could set 𝑑1 and 𝑑2 to split treated
units into those with above- or below-median
doses. Of course, one can entertain finer dose
partitions. We recommend paying attention to
the effective sample size in each chosen partition.

A feature of 𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒) is that it aggregates
across several treatment dosages. In some appli-
cations, however, researchers may want to report
detailed heterogeneity with respect to 𝑑. Ag-
gregating over some event-times can facilitate
reporting estimated dose-response functions. To
formalize this idea, let 𝑒1 and 𝑒2 be two post-
treatment event-times such that 0 ≤ 𝑒1 ≤ 𝑒2 and

let

𝐴𝑇𝑇𝑒𝑠
𝑒1,𝑒2(𝑑)

=

∑𝑒2
𝑒=𝑒1 𝐸

[
𝐴𝑇𝑇 (𝐺,𝐺 + 𝑒, 𝑑)

����𝐺 + 𝑒2 ∈ [2, 𝑇], 𝐷 = 𝑑

]
𝑒2 − 𝑒1 + 1

be the average treatment effect of receiving dose
𝑑, among all units that have been treated for at
least 𝑒2 periods, averaged over event-times 𝑒1 to
𝑒2. When 𝑒2 = 𝑒1 = 𝑒, 𝐴𝑇𝑇𝑒𝑠

𝑒1,𝑒2(𝑑) provides
a dose-response function for all units that have
been treated for exactly 𝑒 periods. When 𝑒2 >

𝑒1, however, 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑) averages these curves

over event-time and can be used to summarize
dose-responses in terms of “short-run” (e.g., 𝑒1 =

0, 𝑒2 = 2) and “long-run” (e.g., 𝑒1 = 3, 𝑒2 = 4)
effects. When constructing these dose-response
curves averaged over event-times, we impose that
the data is balanced in event-time within the 𝑒1
to 𝑒2 window (𝐺+𝑒2 ∈ [2, 𝑇]), so compositional
changes are not a concern, but it is possible to
relax this restriction.

Next, we show that these event-study function-
als are identified under traditional DiD assump-
tions.

III. Identification of event-study parameters

The following assumptions are sufficient to
identify the event-study parameters. Let D+ =

D \ {0} denote the positive part of the sup-
port of 𝐷. Let Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, and write
𝑊𝑡 = 𝐷1{𝑡 ≥ 𝐺}.

ASSUMPTION 1: The observed data consists
of {𝑌𝑖,1, . . . , 𝑌𝑖,𝑇 , 𝐷𝑖 , 𝐺𝑖}𝑛𝑖=1 which is indepen-
dent and identically distributed.

ASSUMPTION 2: (i) D+ = [𝑑𝐿 , 𝑑𝑈] with 0 <

𝑑𝐿 < 𝑑𝑈 < ∞, (ii) 𝑃(𝐷 = 0) > 0 and
𝑑𝐹𝐷 |𝐺 (𝑑 |𝑔) > 0 for all (𝑔, 𝑑) ∈ (G\{∞})×D+,
(iii) For all 𝑔 ∈ (G \ {∞}) and 𝑡 = 2, . . . , 𝑇 ,
𝐸 [Δ𝑌𝑡 |𝐺 = 𝑔, 𝐷 = 𝑑] is continuously differen-
tiable in 𝑑 on D+.

ASSUMPTION 3: (i) For all 𝑔 ∈ G and 𝑡 =

1, . . . , 𝑇 with 𝑡 < 𝑔, 𝑌𝑖,𝑡 (𝑔, 𝑑) = 𝑌𝑖,𝑡 (0) a.s. (ii)
𝑊𝑖,1 = 0 a.s. and for 𝑡 = 2, . . . , 𝑇 , 𝑊𝑖,𝑡−1 = 𝑑

implies that 𝑊𝑖,𝑡 = 𝑑 a.s.

ASSUMPTION 4: For all (𝑔, 𝑔′) ∈ G × G, 𝑡 =
2, . . . , 𝑇 , and (𝑑, 𝑑′) ∈ D × D, 𝐸 [Δ𝑌𝑡 (0) |𝐺 =

𝑔, 𝐷 = 𝑑] = 𝐸 [Δ𝑌𝑡 (0) |𝐺 = 𝑔′, 𝐷 = 𝑑′].
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Assumption 1 states that we have panel data. As-
sumption 2 states that we have a set of units that
are never-treated and that treatment is continu-
ous; if there are no never-treated units, we can
restrict attention to periods 𝑡 = 1, . . . , �̄� − 1,
where �̄� = max{𝐺𝑖 : 𝐺𝑖 < ∞} is the time of
the last-treated group. Assumption 3 imposes
no-anticipation and that treatment is staggered.
Finally, Assumption 4 is a parallel trends condi-
tion that states that, in the absence of treatment,
the average evolution of the untreated potential
outcomes is the same across time-dosage groups.
These assumptions are similar to those in Call-
away, Goodman-Bacon and Sant’Anna (2024).

Let 𝑈𝑡 be a generic binary variable that takes
value one if a unit is part of a user-chosen
“clean” comparison group at time 𝑡; e.g., the
not-yet-treated indicator 𝑈𝑡 = 1{𝐺 > 𝑡 ∪ 𝐷 =

0}. Define 𝜃𝑜
𝑑1 ,𝑑2

(𝑔, 𝑡) = 𝐸
[
𝑌𝑡 − 𝑌𝑔−1 |𝐺 =

𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2] − 𝐸 [𝑌𝑡 − 𝑌𝑔−1 |𝑈max{𝑡 ,𝑔−1} =

1, 𝑑1 ≤ 𝐷 ≤ 𝑑2 ∪ 𝐷 = 0], and 𝜃𝑜 (𝑔, 𝑡) =

𝜃𝑜
𝑑𝐿 ,𝑑𝐻

(𝑔, 𝑡). In addition, for every unit 𝑖 such
that 𝐺𝑖 + 𝑒2 ∈ [2, 𝑇], let 𝑌 𝑒1 ,𝑒2

𝑖
(𝑔) = 1{𝐺𝑖 =

𝑔}
[ ∑𝑒2

𝑒=𝑒1

(
𝑌𝑖,𝑔+𝑒 − 𝑌𝑖,𝑔−1

) /
(𝑒2 − 𝑒1 + 1) −∑𝑒2

𝑒=𝑒1 𝐸 [𝑌𝑔+𝑒−𝑌𝑔−1 |𝑈𝑔+𝑒2 = 1]
/
(𝑒2 − 𝑒1 + 1)

]
.

THEOREM 1: Under Assumptions 1 to 4, (i)
𝐴𝑇𝑇𝑒𝑠 (𝑒) = 𝐸 [𝜃𝑜 (𝐺,𝐺+𝑒) |𝐺+𝑒 ∈ [2, 𝑇], 𝐷 >

0], (ii) 𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒) = 𝐸 [𝜃𝑜
𝑑1 ,𝑑2

(𝐺,𝐺+𝑒) |𝐺+𝑒 ∈
[2, 𝑇], 𝑑1 ≤ 𝐷 ≤ 𝑑2], and (iii) 𝐴𝑇𝑇𝑒𝑠

𝑒1 ,𝑒2 (𝑑) =

𝐸 [𝑌 𝑒1 ,𝑒2 (𝐺) |𝐺 + 𝑒2 ∈ [2, 𝑇], 𝐷 = 𝑑].

Theorem 1(i) shows that we can essentially
ignore treatment intensity when focusing on
the event-study-type parameters 𝐴𝑇𝑇𝑒𝑠 (𝑒), and
therefore, use the estimators from staggered DiD
setups with a binary treatment to estimate these
parameters. For instance, with 𝑈𝑡 = 1{𝐺 >

𝑡 ∪𝐷 = 0}, one can use Callaway and Sant’Anna
(2021) event-study estimators with the not-yet-
treated units as a comparison group; this involves
“labeling” units with 𝐷 = 0 as 𝐺 = ∞. Theo-
rem 1(ii) shows that this is still the case when
one wants to present event-studies that only par-
tially aggregate across dosages. More specifi-
cally, to estimate 𝐴𝑇𝑇𝑒𝑠

𝑑1 ,𝑑2
(𝑒), one needs to first

subset the observations only to contain units that
received treatment dose between 𝑑1 and 𝑑2, or
those that received zero dose, 𝐷 = 0. Within
this subset of units, one can then “ignore” the
treatment intensity and proceed as estimating
𝐴𝑇𝑇𝑒𝑠 (𝑒).

Theorem 1(iii) has a slightly different flavor
than the previous parts, as 𝐴𝑇𝑇𝑒𝑠

𝑒1 ,𝑒2 (𝑑) is a dose-
response parameter. However, it also has im-
portant, practical implications. More specifi-
cally, it highlights that one can rely on the dose-
response-curve estimators proposed by Call-
away, Goodman-Bacon and Sant’Anna (2024) for
two-periods setups, as 𝑌

𝑒1 ,𝑒2
𝑖

(𝑔) essentially in-
volves only one pre- and post-treatment period.
In setups with a large number of cross-sectional
units, one can leverage Chen, Christensen and
Kankanala (2023)’s data-driven nonparametric
estimator discussed in Callaway, Goodman-
Bacon and Sant’Anna (2024). When the sample
size is limited, one can choose a flexible paramet-
ric model (e.g., splines with a fixed number of
knots) to approximate the dose-response curve.

IV. An application to fracking

Bartik et al. (2019a) use a staggered and non-
binary treatment variable to study the local eco-
nomic effects of hydraulic fracking. Fracking is
only possible in areas with underground shale
formations that can be fractured (“fracked”) to
release hydrocarbons. The costs and yield of
fracking—“prospectivity”—depend on geologic
factors that vary continuously across areas over
a given shale formation. We slightly modify the
DiD research design in Bartik et al. (2019a) by
exploiting variation in the timing of fracking ac-
tivity across shale formations from 2001-2014
(𝐺𝑖 , hand-collected by the authors) and continu-
ous variation in prospectivity score across coun-
ties (𝐷𝑖 , purchased from Rystad Energy); see
Bartik et al. (2019b). We denote counties with
zero prospectivity score as “never-treated” and
set 𝐺𝑖 = ∞ for them. We focus on the log of
total county employment as our main outcome,
and use not-yet-treated units as the comparison
group in all estimates below.

Figure 1 display results for 𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒) us-
ing two sets of (𝑑1, 𝑑2): the orange curve sets
𝑑1 = 0.20 and 𝑑2 = 3.95, where 0.20 and 3.95
are the minimum and the median fracking ex-
posure among counties with positive exposure.
We refer to this group as “low dose”. The blue
curve sets 𝑑1 slightly above 3.95 and 𝑑2 = 9.35,
where the latter is the maximum fracking ex-
posure. We refer to this group as “high dose”.
Pre-trends seem to be parallel for both groups for
11 years prior to fracking, supporting the paral-
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𝑑1 ,𝑑2

(𝑒) using
Callaway and Sant’Anna (2021). Shaded areas are 95%
pointwise confidence intervals. The orange (blue) curve
sets 𝑑1 and 𝑑2 to 0.2 and 3.95 (3.96 and 9.35).

Figure 1. Event Study estimates for high
and low-dose groups

lel trends assumption. “Low-dose” counties have
treatment effects that are not statistically differ-
ent from zero until 3 years after fracking activity
begins, when they are about 2%. “High-dose”
counties, on the other hand, have larger average
effects that grow from 2% in the year after frack-
ing to 7% higher employment four years after
fracking.

Figure 2 displays results for time-averaged
dose-response curves, 𝐴𝑇𝑇𝑒𝑠

𝑒1 ,𝑒2 (𝑑): the orange
curve sets 𝑒1 and 𝑒2 to 0 and 2 (“short-run”) and
the blue curve uses 3 and 4 (“long-run”). We
use cubic splines with internal knots at the 25𝑡ℎ,
50𝑡ℎ, and 75𝑡ℎ percentile of the dose. This figure
echoes the conclusions from Figure 1 that short-
run effects are smaller than long-run effects and
counties with higher prospectivity scores have
larger employment effects from fracking. This
aggregation, however, shows where in the distri-
bution of prospectivity these effects are largest.
For example, in the longer-run, average employ-
ment effects are similarly large for all counties
with scores above about 4.
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ing Callaway, Goodman-Bacon and Sant’Anna (2024).
Shaded areas are 95% pointwise confidence intervals. The
orange (blue) curve sets 𝑒1 and 𝑒2 to 0 and 2 (3 and 4).

Figure 2. Estimated dose-response curves
for short and long-run effects

V. Conclusion: choosing an aggregation

Because of the sheer number of “building
block” parameters in a staggered and continuous
DiD design (e.g., 𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑)), researchers first
need to choose a way to aggregate them. This
choice should be driven by the research question.
In our example, interest in the dynamic effects of
fracking suggests event-study aggregations for
bins of prospectivity. Interest in the relationship
between natural resource endowments and local
economies suggests dose-response aggregations
in different post-fracking time windows.

Once aggregate summary parameters have
been chosen, however, many simple DiD esti-
mation tools are available. Thus, in practice,
careful choices about aggregation help with both
the interpretation and application of “new” DiD
methods.
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Proof of Theorem 1

First, notice that part (i) is a special case of part (ii) with 𝑑1 = 𝑑𝐿 and 𝑑2 = 𝑑𝐻 . Thus, the proof of
part (i) follows directly from part (ii).

For part (ii), it suffices to show that, for every 𝑔 ∈ G \ {∞}, and every time period 𝑡 = 2, . . . , 𝑇 ,
𝜃𝑜
𝑑1 ,𝑑2

(𝑔, 𝑡) = 𝐸 [𝐴𝑇𝑇 (𝑔, 𝑡, 𝐷)
��𝐺 = 𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2], where 0 < 𝑑1 ≤ 𝑑2. Towards that end, note that

under Assumptions 1 to 4, we have that, for any 𝑑 ∈ [𝑑1, 𝑑2], 𝑔 ∈ G \ {∞},
𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑) =𝐸 [𝑌𝑡 − 𝑌𝑔−1

��𝐺 = 𝑔, 𝐷 = 𝑑]
− 𝐸 [𝑌𝑡 − 𝑌𝑔−1

��𝑈max{𝑡 ,𝑔−1} = 1, 𝑑1 ≤ 𝐷 ≤ 𝑑2 ∪ 𝐷 = 0],(A1)

which follows from Theorem 3.1 and Appendix SA of Callaway, Goodman-Bacon and Sant’Anna
(2024), and the fact that all units with 𝑈max{𝑡 ,𝑔−1} = 1 are untreated by time 𝑡. From (A1) and the law
of iterated expectations, it follows that

𝐸 [𝐴𝑇𝑇 (𝑔, 𝑡, 𝐷)
��𝐺 = 𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2] =𝐸 [𝑌𝑡 − 𝑌𝑔−1

��𝐺 = 𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2]
− 𝐸 [𝑌𝑡 − 𝑌𝑔−1

��𝑈max{𝑡 ,𝑔−1} = 1, 𝑑1 ≤ 𝐷 ≤ 𝑑2 ∪ 𝐷 = 0],(A2)

and the right-hand side of (A2) is the definition of 𝜃𝑜
𝑑1 ,𝑑2

(𝑔, 𝑡). This establishes that 𝜃𝑜
𝑑1 ,𝑑2

(𝑔, 𝑡) =

𝐸 [𝐴𝑇𝑇 (𝑔, 𝑡, 𝐷)
��𝐺 = 𝑔, 𝑑1 ≤ 𝐷 ≤ 𝑑2] and concludes the proof of part (ii) of Theorem 1. As

mentioned above, part (i) of Theorem 1 follows by taking 𝑑1 = 𝑑𝐿 and 𝑑2 = 𝑑𝐻 .

Next, we prove part (iii) that 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑) = 𝐸 [𝑌 𝑒1 ,𝑒2 (𝐺)

��𝐺 + 𝑒2 ∈ [2, 𝑇], 𝐷 = 𝑑]. Towards that
end, first notice that, for every 𝑑 ∈ D+, every group 𝑔 ∈ G \ {∞} and time period 𝑡 ∈ [2, 𝑇] such that
𝑡 ≤ 𝑔 + 𝑒2, 𝑔 + 𝑒2 ∈ [2, 𝑇], 𝑒2 ≥ 0, we have from Appendix SA of Callaway, Goodman-Bacon and
Sant’Anna (2024) that under Assumptions 1 to 4,

𝐴𝑇𝑇 (𝑔, 𝑡, 𝑑) = 𝐸 [𝑌𝑡 − 𝑌𝑔−1
��𝐺 = 𝑔, 𝐷 = 𝑑] − 𝐸 [𝑌𝑡 − 𝑌𝑔−1

��𝑈𝑔+𝑒2 = 1] .
Thus, it follows that, for a given group 𝑔 that satisfies the above restrictions, and for any 0 ≤ 𝑒1 ≤ 𝑒2,∑𝑒2

𝑒=𝑒1 𝐴𝑇𝑇 (𝑔, 𝑔 + 𝑒, 𝑑)
𝑒2 − 𝑒1 + 1

=

𝑒2∑︁
𝑒=𝑒1

𝐸 [𝑌𝑔+𝑒 − 𝑌𝑔−1
��𝐺 = 𝑔, 𝐷 = 𝑑] − 𝐸 [𝑌𝑔+𝑒 − 𝑌𝑔−1

��𝑈𝑔+𝑒2 = 1]
𝑒2 − 𝑒1 + 1

.(A3)

Next, notice that from the linearity property of conditional expectations and from the fact that the
data is balanced in event-time (so there are no compositional changes across event-times), we have
that, for every 𝑔 such that 𝑔 + 𝑒2 ∈ [2, 𝑇], and every 𝑑 ∈ D+,

𝐸 [𝑌 𝑒1 ,𝑒2 (𝐺)
��𝐺 = 𝑔, 𝐷 = 𝑑] = 𝐸

[∑𝑒2
𝑒=𝑒1

(
𝑌𝑔+𝑒 − 𝑌𝑔−1

)
− 𝐸 [𝑌𝑔+𝑒 − 𝑌𝑔−1

��𝑈𝑔+𝑒2 = 1]
𝑒2 − 𝑒1 + 1

����𝐺 = 𝑔, 𝐷 = 𝑑

]
=

𝑒2∑︁
𝑒=𝑒1

𝐸 [𝑌𝑔+𝑒 − 𝑌𝑔−1
��𝐺 = 𝑔, 𝐷 = 𝑑] − 𝐸 [𝑌𝑔+𝑒 − 𝑌𝑔−1

��𝑈𝑔+𝑒2 = 1]
𝑒2 − 𝑒1 + 1

=

∑𝑒2
𝑒=𝑒1 𝐴𝑇𝑇 (𝑔, 𝑔 + 𝑒, 𝑑)

𝑒2 − 𝑒1 + 1
,(A4)

where the last equality follows from (A3).

From the definition of conditional expectations and its linearity property, it follows from (A4) that

𝐸 [𝑌 𝑒1 ,𝑒2 (𝐺)
��𝐺 + 𝑒2 ∈ [2, 𝑇], 𝐷 = 𝑑] =

∑𝑒2
𝑒=𝑒1 𝐸

[
𝐴𝑇𝑇 (𝐺,𝐺 + 𝑒, 𝑑)

����𝐺 + 𝑒2 ∈ [2, 𝑇], 𝐷 = 𝑑

]
𝑒2 − 𝑒1 + 1

,

which is what we wanted to show. This concludes the proof of Theorem 1. ■
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Additional plots for empirical application

We now complement the empirical analysis of our main text related to Bartik et al. (2019a). As
discussed in Section IV, Bartik et al. (2019a) use a staggered and non-binary treatment variable to
study the local economic effects of hydraulic fracking, and we slightly modify the DiD research design
in their paper by exploiting variation in the timing of fracking activity across shale formations from
2001-2014 (𝐺𝑖 , hand-collected by the authors) and continuous variation in prospectivity score across
counties (𝐷𝑖 , purchased from Rystad Energy); see Bartik et al. (2019b). We denote counties with
zero prospectivity score as “never-treated” and set 𝐺𝑖 = ∞ for them. We use the log of total county
employment as the outcome of interest and use not-yet-treated units as the comparison group in all
estimates below.

In the main text, we report in Figure 1 estimates of 𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒) using two sets of (𝑑1, 𝑑2): the
orange curve sets 𝑑1 = 0.20 and 𝑑2 = 3.95, where 0.20 and 3.95 are the minimum and the median
fracking exposure among counties with positive exposure (“low dose”), whereas the blue curve sets
𝑑1 slightly above 3.95 and 𝑑2 = 9.35, where 9.35 is the maximum fracking exposure (“high dose”). In
some applications, we expect researchers also to want to report an “overall” event-study aggregation,
𝐴𝑇𝑇𝑒𝑠 (𝑒), as discussed in our main text. Figure B1 presents estimates of such event-study coefficients
using the event-study estimators proposed by Callaway and Sant’Anna (2021).
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Notes: Solid lines denotes estimates of 𝐴𝑇𝑇𝑒𝑠 (𝑒) using Callaway and Sant’Anna (2021). Shaded areas are 95% pointwise
confidence intervals.

Figure B1. Overall event-study estimates

As one should expect, the event-study estimates in Figure B1 are an average of the “high dose” and
“low dose” event-study estimates in Figure 1 from the main text (which we reproduce as Figure B2
to facilitate comparisons). From Figure B1, one can see that non-parallel pre-trends are not a major
concern, and that longer-run effects are stronger than shorter-run ones.

We next move to estimates of time-averaged dose-response curves, 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑). Figure 2 in

the main text displays results for time-averaged dose-response curves, 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑) using Callaway,

Goodman-Bacon and Sant’Anna (2024)’s estimators with cubic splines: the orange curve sets 𝑒1 and
𝑒2 to 0 and 2 (“short-run”), and the blue curve uses 3 and 4 (“long-run”). We reproduce Figure 2 as
Figure B4 below to facilitate comparisons. Similar to the above, we expect that some researchers may
be interested in reporting an “overall” dose-response curve, e.g., by setting 𝑒1 = 0 and 𝑒2 = 4. We
report estimates of this in Figure B3.

Figure B3 echoes the conclusions from the “long-term” dose-response results in Figure B4 that
counties with higher prospectivity scores have larger employment effects from fracking. Figure B3
also highlights that average employment effects in the first 4 years after fracking are similarly large
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Notes: Solid lines denotes estimates of 𝐴𝑇𝑇𝑒𝑠
𝑑1 ,𝑑2

(𝑒) using Callaway and Sant’Anna (2021). Shaded areas are 95%
pointwise confidence intervals. The orange (blue) curve sets 𝑑1 and 𝑑2 to 0.2 and 3.95 (3.96 and 9.35).

Figure B2. Event Study estimates for high and low-dose groups
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Notes: Solid lines denotes estimates of 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑) using Callaway, Goodman-Bacon and Sant’Anna (2024), with 𝑒1 = 0

and 𝑒2 = 4. Shaded areas are 95% pointwise confidence intervals.

Figure B3. Time-averaged estimated dose-response curves

for all counties with scores above about 2.5; it is not just the most fracking-amenable counties that
drive its labor market effects.
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Notes: Solid lines denotes estimates of 𝐴𝑇𝑇𝑒𝑠
𝑒1 ,𝑒2 (𝑑) using Callaway, Goodman-Bacon and Sant’Anna (2024). Shaded

areas are 95% pointwise confidence intervals. The orange (blue) curve sets 𝑒1 and 𝑒2 to 0 and 2 (3 and 4).

Figure B4. Estimated dose-response curves for short and long-run effects


